Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/5002
DC FieldValueLanguage
dc.contributor.authorallGomaa, M. M.; National Research Centre, Geophysical Sciences Dep., El-Tahrir St. Dokki, 12311, Egypten
dc.date.accessioned2009-04-01T10:08:36Zen
dc.date.available2009-04-01T10:08:36Zen
dc.date.issued2008-10en
dc.identifier.urihttp://hdl.handle.net/2122/5002en
dc.description.abstractThis paper focuses on the effect of water saturation on A. C. electrical conductivity and dielectric constant of fully and partially saturated hematitic sandstone sample (Aswan area, Egypt). The saturation of the sample was changed from partial to full saturation. Complex resistivity measurements at room temperature (~16°C), were performed in the frequency range from 0.1 Hz to 100 KHz. Experimental electrical spectra indicate, generally, that the electrical conductivity and dielectric constant vary strongly with water saturations and frequency. The low frequency electrical conductivity and dielectric constant are mainly controlled by surface conduction and polarization of the electrical double layer. The behaviour of the electrical conductivity and dielectric constant, with increasing water content, were argued to the orientational polarization of bound water for very low saturations, displacement of the excess surface charges for relatively low saturations, and free exchange of excess ions in double layer with the bulk electrolyte and generation of transient diffusion potentials which lag behind the applied field for high saturations.en
dc.language.isoEnglishen
dc.relation.ispartofAnnals of Geophysicsen
dc.relation.ispartofseries5-6/51 (2008)en
dc.subjectElectric propertiesen
dc.subjectcomplex conductivityen
dc.subjectfrequencyen
dc.subjecthematiteen
dc.subjectwater saturationen
dc.titleRelation between electric properties and water saturation for hematitic sandstone with frequencyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber801-811en
dc.subject.INGV03. Hydrosphere::03.02. Hydrology::03.02.99. General or miscellaneousen
dc.relation.referencesChelidze, T. and Y. Guéguen (1999): Electrical spectroscopy of porous rocks: a review - I. Theoretical models, Geophys. J. Int., 137, 1-15. Chelidze, T., Y. Guéguen and C. Ruffet (1999): Electrical spectroscopy of porous rocks: a review -II. Experimental results and interpretation, Geophys. J. Int., 137, 16-34. Chew, W.C., and P.N. Sen (1982): Dielectric enhancement due to electrochemical double layer : thin double layer approximation, J. Chem. Phys., 77 (9), 4683- 4693. Cole, K.S. and R.H. Cole (1941): Dispersion and adsorption in dielectrics (I), J. Chem. Phys., 137, 341-351. Dukhin, S.S. (1971): Dielectric properties of disperse systems, in «Surface and colloid science», (Matijevic, E., Editor), Wiley and sons, New York, Vol. 3, pp. 83- 166. Efros, A.L. and B.I. Shklovskii (1976): Critical behaviour of conductivity and dielectric constant near the metal– non-metal transition threshold, Phys. Status Sol., 137, 475-489. Garcia-Belmonte, G., V. Kytin, T. Dittrich and Bisquert (2003): Effect of humidity on the ac conductivity of nanoporous TiO2, J. Appl. Phys., 94 (8), 5261- 5264. Garrouch, A.A. (2001): Effect of wettability and water saturation on the dielectric constant of hydrocarbons rocks, 41st Annual Logging Symp. (SPWLA), paper NN. Garrouch, A.A. and M.M. Sharma (1994): The influence of clay content, salinity, stress and wettability on the dielectric properties of brine-saturated rocks: 10 Hz to 10 MHz, Geophysics, 137, 909-917. Glover, P.W.J., P.G. Meredith, P.R. Sammonds and S.A.F. Murrel (1994a): Ionic surface electrical conductivity in sandstone, J. Geophys. Res., 99, B11, 21635-21650. Glover, P.W.J., P.G. Meredith, P.R. Sammonds and S.A.F. Murrel (1994b): Measurements of complex electrical conductivity and fluid permeabilities in porous rocks at raised confining pressures, in Rock Mechanics in Petroleum Engineering, Proc. EUROROCK94, 29-36, Balkema, Amsterdam. Gomaa, M.M. (1996): Frequency response study on iron ore bearing rock samples, (M. Sc. Thesis, Cairo University, Egypt). Gomaa, M.M. (2004): Induced polarization Study on iron ore bearing rock samples, (Ph. D. Thesis, Cairo University, Egypt). Gomaa, M.M., S.A. Hussain, E.A. El- Diwany, A.E. Bayoumi and M. Ghobashy (2000): Modeling of A. C. electrical properties of humid sand and the effect of water content, 70th annual international meeting, Society of Exploration Geophysics (SEG) and international Exposition, Session «Rock properties/Borehole: Rock Physics 1», Oral RPB6.7, Calgary, Alberta, Canada, 6-11 August, 1850-1853. Grant, F.A. (1958): Use of complex conductivity in the representation of dielectric phenomena, J. Appl. Phys., 29, 1, 76-80. Hoekstra, P. and W.T. Doyle (1971): Dielectric relaxation of surface adsorbed water, J. Colloid Interface Sci., 137, 513-521. Jonscher, A.K. (1999): Dielectric relaxation in solids, J. Phys. D: Appl. Phys., 32, R57–R70. Knight, R. (1983): The use of complex plane plots in studying the electrical response of rocks, J. Geomag. Geoelectr., 137, 767-776. Knight, R. J. and A. Nur (1987): The dielectric constant of sandstones, 50 kHz to 4 MHz, Geophysics, 52, 644- 654. Knight, R.J. and A.L. Endres (1990): A new concept in modeling the dielectric response of sandstones: Defining a wetted rock and bulk water system, Geophysics, 55, 586-594. Leroy, P., and A. Revil (2004): A triple layer model of the surface electrochemical properties of clay minerals, Journal of Colloid and Interface Science, 270, 2, 371- 380. Levitskaya, T.M. and B.K. Sternberg (2000): Application of lumped-circuit method to studying soils at frequencies from 1 kHz to 1 GHz., Radio Science, 35, 2, 371-383. Macdonald, J.R. (1974): Binary electrolyte small-signal frequency response, Electroanal. Chem., Interfac. Electrochem., 53, 1-55. Mehaute, A. and G. Crepy (1983): Introduction to transfer and motion in fractal media; the geometry of kinetics, Solid State Ionics, 137, 17-30. Mendelson, K. S. and M.H. Cohen (1982): The effect of grain anisotropy on the electrical properties of sedimentary rocks, Geophys., 47 (2), 257-263. Minor, M., H.P. Van Leeuwen and J. Lyklema (1998): Low-Frequency Dielectric Response of Polystyrene Latex Dispersions, Journal of Colloid and Interface Science, 206 (2), 397-406. Mitchell, J.K. (1992): Fundamentals of Soil Behaviour, 2nd edn., (Wiley, New York), p. 437. Olhoeft, G.R. (1985): Low frequency electrical properties, Geophysics, 137, 2492-2503. Parkhomenko, E.I. (1967): Electrical Properties of Rocks, (Plenum Press, New York), p. 314. Pride, S. (1994): Governing equations for the coupled electromagnetics and acoustics of porous media, Phys. Rev. B., 50, 1, 15678-15696. Revil, A. and P.W.J. Glover (1998): Theory of ionic surface electrical conduction in porous media, Physical Review B., 55 (3) 1757-1773. Roberts, J. and W. Lin (1997): Electrical properties of partially saturated topopah spring tuff: water distribution as a function of saturation, Water Resources Research, 33, 577-587. Ruffet, C., Y. Guéguen and M. Darot (1991a): Complex measurements and fractal nature of porosity, Geophysics, 137, 758-768. Ruffet, C., Y. Guéguen and M. Darot (1991b): Rock conductivity and fractal nature of porosity, Terra Nova, 137, 265-275. Saarenketo, T. (1998): Electrical properties of water in clay and silty soils, Journal of Applied Geophysics, 40, 73-88. Schwan, H.P., G. Schwarz, J. Maczuk and H. Pauly (1962): On the low-frequency dielectric dispersion of colloidal particles in electrolyte solution, Journal of Physical Chemistry, 66, 2626-2635. Schwarz, G. (1962): A theory of the low-frequency dielectric dispersion of colloidal particles in electrolyte solution, Journal of Physical Chemistry, 66, 2636-2642. Sen, P.N. (1989): Unified models of conductivity and membrane potential of porous media, Phys. Rev. B., 137, 9508-9517. Shilov, V.N., A.V. Delgado, F. Gonzalez-Caballero and C. Grosse (2001): Thin double layer theory of the wide-frequency range dielectric dispersion of suspensions of non-conducting spherical particles including surface conductivity of the stagnant layer, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 192, 253-265. Wilkinson, D., J.S. Langer and P.N. Sen (1983): Enhancement of the dielectric constant near a percolation threshold, Phys. Rev. B, 28, 2, 1081-1087. Wong, J. (1979): An electrochemical model of the inducedpolarization phenomenon in disseminated sulfide ores, Geophysics, 44, 1245-1265. Wong, P.Z. (1987): Fractal surfaces in porous media, in Physics and Chemistry of Porous Media, 137, edited by J.P. Bahavar, J. Koplik and K.W. Winkler, Am. Inst. Phys., 154, 304-318.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorGomaa, M. M.en
dc.contributor.departmentNational Research Centre, Geophysical Sciences Dep., El-Tahrir St. Dokki, 12311, Egypten
item.cerifentitytypePublications-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.fulltextWith Fulltext-
item.openairetypearticle-
crisitem.classification.parent03. Hydrosphere-
crisitem.author.deptNational Research Centre, Geophysical Sciences Dep., El-Tahrir St. Dokki, 12311, Egypt-
Appears in Collections:Annals of Geophysics
Files in This Item:
File Description SizeFormat
04 Gomaa.pdf572.46 kBAdobe PDFView/Open
Show simple item record

Page view(s) 5

409
checked on Dec 8, 2022

Download(s) 5

975
checked on Dec 8, 2022

Google ScholarTM

Check