Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4995
DC FieldValueLanguage
dc.contributor.authorallBraitenberg, C.en
dc.contributor.authorallEbbing, J.en
dc.date.accessioned2009-03-30T10:04:41Zen
dc.date.available2009-03-30T10:04:41Zen
dc.date.issued2009-03en
dc.identifier.urihttp://hdl.handle.net/2122/4995en
dc.description.abstractThe oil- and gas-rich West Siberian Basin is underlain by a layer of flood basalts of late Permian-Triassic age that are coeval with the Siberian traps. The extent and thickness of the basalts is unknown, but knowing their thickness is important for discussions on the end- Permian mass extinction because basalt volume constrains estimates of emitted volatiles. We have used GRACE satellite and terrestrial gravity data to study the structure of the crust and basalt distribution. Published seismic sections are used to constrain the sediment isopachs and to estimate a depth-density function. We use published models of crustal thickness and basement depth to reduce the observed gravity field to the basement level. The resulting 3D density model gives information on density anomalies in the lower crust and upper mantle and on the basalt thickness. We identify several rift-graben structures which are presumably filled with basalt. The lower crust below the West Siberian Basin shows considerable density variations and these variations allow the region to be divided into four major blocks. The eastern part of the basin, towards the Siberian platform, shows an arch-shaped density increase in the lower crust that is accompanied by a linear high-density anomaly at shallower depths. Our work demonstrates the way in which the GRACE-gravity field can be applied to map geological structures like buried rifts and large basins. The same techniques can be used for other large, remote basins such as those in cratonic South America.en
dc.language.isoEnglishen
dc.publisher.nameAGU- American Geophysical Unionen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseries2009en
dc.subjectWest Siberian Basinen
dc.subjectEnd Perm basaltsen
dc.subjectGRACEen
dc.subjectGravityen
dc.subjectIsostasyen
dc.subjectOil Maturationen
dc.subjectFlood basalten
dc.subjectPlume magmatismen
dc.subjectMass extinctionen
dc.titleNEW INSIGHTS INTO THE BASEMENT STRUCTURE OF THE WESTen
dc.title.alternativeThe West Siberian Basin from GRACEen
dc.typearticleen
dc.description.statusIn pressen
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber12-20en
dc.identifier.URLhttp://www2.units.it/~geodin/bib/JGR09.pdfen
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneousen
dc.identifier.doidoi:10.1029/2008JB005799en
dc.relation.referencesAleinikov, A.L., O.V. Bellavin, Yu.P. Bulasevich, I.F. Tavrin, E.M. Maksimov, M.Ya. Rudkevich, V.D. Nativkin, N.V. Shablinskaya, and V.S. Surkov (1980), Dynamics of the Russian and West Siberian Platforms, in Dynamics of Plate Interiors, edited by A.W. Bally, pp. 53-71, American Geophysical Union and Geol. Soc. Of America. Allen P.A. and J.R. Allen (2005) Basin Analysis: principles and applications, 2nd ed., pp. 549, Blackwell, Oxford. Allen, M.B., L. Anderson, R.C. Searle, and M. Buslov (2006), Oblique rift geometry of the West Siberian Basin: tectonic setting for the Siberian flood basalts, Journal of the geological Society, London, 163, 901-904. Artyushkov, E.V. and M.A. Baer (1986), Mechanism of formation of hydrocarbon basins: the West Siberia, Volga-Urals, Timan-Pechora basins and the Permian basin of Texas, Tectonophysics, 122, 247-281. Blakely, R.J. (1995) Potential theory in gravity and magnetic applications. 441 pp., Cambridge University Press, New York. Braitenberg, C., S. Wienecke, and Y. Wang (2006), Basement structures from satellite-derived gravity field: South China Sea ridge, Journal of Geophysical Research, Vol.111, B05407, doi:10.1029/2005JB003938. Braitenberg, C. and J. Ebbing (2007), The gravity potential derivatives as a means to classify the Barents sea basin in the context of cratonic basins, Extended Abstracts, EGM 2007 International Workshop, Innovation in EM, Grav and Mag Methods: a new Perspective for Exploration, Villa Orlandi, Capri - Italy , 15-18 April 2007 (http://www2.ogs.trieste.it/egm2007/) Braitenberg, C. and J. Ebbing (2009), The GRACE-satellite gravity and geoid fields in analysing large scale, cratonic or intracratonic basins, Geophysical Prospecting, in press. Braitenberg, C., S. Wienecke, J. Ebbing, W. Born, and T. Redfield (2007), Joint gravity and isostatic analysis for basement studies - a novel tool, Extendended Abstracts, EGM 2007 International Workshop, Innovation in EM, Grav and Mag Methods: a new Perspective for Exploration, Villa Orlandi, Capri - Italy , 15-18 April 2007 (http://www2.ogs.trieste.it/egm2007/), Brocher, T.M. (2005), Empirical Relations between Elastic Wavespeeds and Density in the Earth's crust, Bulletin of the Seismological Society of America, 95, 2081-2092. Czamanske, G.K., V. Gurevitch, V. Fedorenko, and O. Simonov (1998), Demise of the Siberian plume: palaeogeographic and palaeotectonic reconstruction from the prevolcanic and volcanic record, north-central Siberia, Int. Geol. Rev., 40, 95-115. Döring, J. and H.-J. Götze (1999), The isostatic state of the southern Urals crust, Geol. Rundsch., 87, 500-510. Döring, J., H.-J. Götze, and M. Kaban (1997), Preliminary study of the gravity field of the southern Urals along the URSEIS ’95 seismic profile, in EUROPROBE’s Uralides projec, edited by A. Peres-Estaún, D. Brown, and D. Gee, Tectonophysics, 276, 49-62. Dziewonski, A.M. and D.L. Anderson (1981) Preliminary reference earth model, Phys. Earth. Plan. Int., 25, 297-356. Ebbing, J., C. Braitenberg, and S. Wienecke (2007), Insights into the lithospheric structure and the tectonic setting of the Barents Sea region by isostatic considerations. Geophys. J. Int., 171, 1390-1403, doi:10.1111/j.1365-246X.2007.03602.x Forsberg, R. (1984) A Study of Terrain Reductions, Density Anomalies and Geophysical Inversion Methods in Gravity Field Modelling, Reports of the Department of Geodetic Science and Surveying, No. 355, The Ohio State University, Columbus, Ohio. Förste, C., R. Schmidt, R. Stubenvoll, F. Flechtner, U. Meyer, R. König, H. Neumayer, R. Biancale, J.-M. Lemoine, S. Bruinsma, S. Loyer, F. Barthelmes, and S. Esselborn (2008), The GeoForschungsZentrum Potsdam/Groupe de Recherche de Geodesie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C, Journal of Geodesy, doi:10.1007/s00190-007-0183-8. Friberg, M., C. Juhlin, A.G. Green, H. Horstmeyer, J. Roth, A. Rybalka and M Bliznetsov (2000), Europrobe seismic reflection profiling across the eastern Middle Urals and West Siberian Basin, Terra Nova, 12, 252-257. Gardner, G.H.F., L.W. Gardner, and A.R. Gregory (1974) Formation velocity and density – the diagnostic basics for stratigraphic traps, Geophysics, 39, 770-780. Jones, E.J.W. (1999) Marine Geophysics, 466 pp., John Wiley and Sons, New York. Karus, E.V., G.A. Gabrielyants, V.M. Kovylin, and N.M. Chernyshev (1984), Depth pattern of West Siberia, Sov. Geol., 5, 75-84 (in Russian). Kovylin, V.M. (1985), Fault-block structure of the West Siberian Craton and its petroleum potential, Sovetskaya geologiya 2, 77–86. [in Russian]. Lane, N. (2007), Mass extinctions – reading the book of death, Nature 448, 122-125. Larsen, H.C., A.D.Saunders, P.D. Clift, and the Shipboard Scientific Party (1994), Proceedings of the Drilling Programme Initial Report, 152, pp. 86, Ocean Drill. Program. College Station, Texas,. Lobkovsky, L.I., S. Cloetingh, A.M. Nikishin, Yu. A. Volozh, A.C.Lankreijer, S.L. Belyakov, V.G. Groshev, P.A. Fokin, E.E. Milanovsky, L.A. Pevzner, V.I. Gorbacjev, and M.A. Korneev (1996), Extensional basins of the former Soviet Union – structure, basin formation mechanisms and subsidence history, Tectonophysics, 266, 251-285. Ludwig, W.J., J.E. Nafe and C.L. Drake (1970) Seismic refraction, in The Sea, edited by A.E. Maxwell, Vol. 4 (Part 1), pp. 53-84,Wiley-Interscience, New York. McKenzie, D. (1978), Some remarks on the development of sedimentary basins, Earth and Planetary Science Letters, 40, 25-32. Morozova, E.A., I.B. Morozov, S.B. Smithson, and L.N. Solodilov (1999), Heterogeneity of the uppermost mantle beneath Russian Eurasia from the ultra-long-range profile QUARTZ, Journal of Geophysical Research, 104 (B9), 20329–20348. Mussett, A. E. and M.A., Khan (2000), Looking into the Earth. An introduction to Geological Geophysics, Cambridge University Press, Cambridge UK, pp. 470. National Geophysical Data Center (1997), Magnetic Anomaly Data of the Former USSR [CD-ROM], National Geophysical Data Center, Boulder, CO Nikishin, A.M., P.A. Ziegler, D. Abbott, M.-F. Brunet and S. Cloetingh (2002), Permo–Triassic intraplate magmatism and rifting in Eurasia. Implications for mantle plumes and mantle dynamics, Tectonophysics, 351, 3 –39. Nunn, J.A. and J.R. Aires (1988), Gravity anomalies and flexure of the lithosphere at the middle Amazon basin, Brazil, J. Geophys. Res., 93, 415-428. Nunn, J.A. and N.H. Sleep (1984), Thermal contraction and flexure of intracratonal basins: a three-dimensional study of the Michigan basin, Geophys. J. R. Astr. Soc., 76, 587-635. Peterson, J.A. and J.W. Clarke (1991), Geology and hydrocarbon habitat of the West Siberian Basin, AAPG Studies in Geology # 32, pp. 96, AAPG, Tulsa, Oklahoma, Pavlov, Y.A (1995), On recognition of rift structures in the basement of the West Siberian plate, Geotectonics, English Translation (AGU), Vol. 29, no.3, 213-223. Pavlenkova, G.A., K. Priestley, and J. Cipar (2002) 2D model of the crust and uppermost mantle along rift profile, Siberian craton, Tectonophysics, 355, 171-186. Reynisson, R.F., J. Ebbing. and J.R. Skilbrei (2009), On the use of potential field data in revealing the basement structure in sub-basaltic settings. An example from the Møre margin offshore Norway, Geophysical Prospecting, in press. Reichow, M.K., A.D. Saunders, R.V. White, M.S. Pringle, A.I. Al’Mukhamedov, A.Ya. Medvedev, N.P. Kirda (2002) 40Ar/39Ar dates from the West Siberian Basin: Siberian Flood Basalt Province doubled, Science, 296, 1846–1849. Saunders, A.D., R.W. England, M.K. Reichow, and R.V. White (2005), A mantle plume origin for the Siberian traps: uplift and extension in the West Siberian Basin, Russia, Lithos, 79, 407-424. Schissel, D. and R. Smail (2001), Deep mantle plumes and ore deposits, in Mantle Plumes: Their Identification Through Time, edited by R.E. Ernst and K.L. Buchan, Geological Society of America, Special Papers, 352, 291–321. Sengor, A.M.C. and B.A. Natal’in (1996), Paleotectonics of Asia: fragments of a synthesis, in The Tectonic Evolution of Asia, edited by A.Yin, and T.M. Harrison, pp. 486–641, Cambridge University Press, New York. Shin Y.H., H. Xu, C. Braitenberg, J. Fang, and Y. Wang (2007) Moho undulations beneath Tibet from GRACE-integrated gravity data, Geophys. J. Int., doi: 10.1111/j.1365-246X.2007.03457.x, 1-15. Sinigoi, S., J. E. Quick, A. Mayer and G. Demarchi (1995) Density-controlled assimilation of underplated crust, Ivrea-Verbano zone, Italy, Earth Planet. Sc. Lett, 129, 183-191. Smallwood, J.R., M.J. Towns, and White, R.S. (2001), The structure of the Faeroe-Shetland Trough from integrated deep seismic and potential field modelling, Journal of the Geological Society, 158, 409-412. Stel, H., S. Cloetingh, M. Heeremans, and P. van der Beck (1993) Anorogenic granites, magmatic underplating and the origin of intracratonic basins in a non-extensional setting, Tectonophysics, 226, 285-299. Surkov, V.S., A.A. Trofimchuk, O.G. Zhero, A.E. Kontorovich, and L.V. Smirnov (1982) The Triassic rift system of the West Siberian plate and its influence on the hydrocarbon potential of the Mesozoic-Cenozoic platform cover, Geol. Geofiz., 8, 3-15. Surkov, V.S., V.P., Devyatov, O.G. Zhero, A.M. Kazakov, V.N. Kramnik, and L.V. Smirnov (1993) The Earth’s crust structure in the region of the Tyumen’ superdeep borehole, Geol. Geofiz., 1, 120-126. Surkov, V.S. (2002) Neogean evolution of the young Ural–Siberian platform, Geologiya i Geofizika, 43, 754–761. Tapley, B., S. Bettadpur, M. Watkins, C. Reigber (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31 (L09607). doi:10.1029/2004GL019920. Tscherning, C.C., R. Forsberg, and P. Knudsen (1992) The GRAVSOFT package for geoid determination, in Proc. 1. Continental Workshop on the Geoid in Europe, Prague, May 1992, pp. 327-334, Prague.Vyssotski A.V., V.N. Vyssotski, and A.A. Nezhdanov (2006) Evolution of the West Siberian Basin, Marine and Petroleum Geol., 23, 93-126. Ulmishek, G. (2003) Petroleum geology and resources of the West Siberian Basin, Russia, U.S. Geological Survey Bulletin 2201–G, 49 p., http://pubs.usgs.gov/bul/2201/G/, United States Geological Survey. Wessel, P. and W. H. F. Smith (1998) New, Improved Version of Generic Mapping Tools Released, EOS Trans., AGU, 79 (47), p. 579.en
dc.description.obiettivoSpecifico3.3. Geodinamica e struttura dell'interno della Terraen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorBraitenberg, C.en
dc.contributor.authorEbbing, J.en
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.orcid0000-0001-7492-5338-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Online_Preview_2008JB005799-pip.pdfMain Article online preview4.11 MBAdobe PDFView/Open
Show simple item record

Page view(s) 50

159
checked on Apr 20, 2024

Download(s) 10

725
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric