Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4982
DC FieldValueLanguage
dc.contributor.authorallRiccardi, U.; Dipartimento di Scienze della Terra, Università degli Studi di Napoli «Federico II», Napoli, Italyen
dc.contributor.authorallBerrino, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallCorrado, G.; Dipartimento di Scienze della Terra, Università degli Studi di Napoli «Federico II», Napoli, Italyen
dc.contributor.authorallHinderer, J.; Ecole et Observatoire des Sciences de la Terre (EOST), Institut de Physique du Globe de Strasbourg, Université Louis Pasteur (UMR 7516 CNRS-ULP), Strasbourg (France)en
dc.date.accessioned2009-03-26T14:14:41Zen
dc.date.available2009-03-26T14:14:41Zen
dc.date.issued2008-02en
dc.identifier.urihttp://hdl.handle.net/2122/4982en
dc.description.abstractThis research is intended to describe new strategies in the processing and analysis of continuous gravity records collected in active volcanic areas and to assess how permanent gravity stations can improve the geophysical monitoring of a volcano. The experience of 15 years in continuous gravity monitoring on Mt. Vesuvius is discussed. Several geodynamic phenomena can produce temporal gravity changes. An eruption, for instance, is associated with the ascent of magma producing changes in the density distribution at depth, and leading to ground deformation and gravity changes The amplitude of such gravity variations is often quite small, in the order of 10-102 nms-2, so their detection requires high quality data and a rigorous procedure to isolate from the records those weak gravity signals coming from different sources. Ideally we need gravity signals free of all effects which are not of volcanic origin. Therefore solid Earth tide, ocean and atmospheric loading, instrumental drift or any kind of disturbances other than due to the volcano dynamics have to be removed. The state of the art on the modelling of the solid Earth tide is reviewed. The atmospheric dynamics is one of the main sources precluding the detection of small gravity signals. The most advanced methods to reduce the atmospheric effects on gravity are presented. As the variations of the calibration factors can prevent the repeatability of high-precision measurements, new approaches to model the instrumental response of mechanical gravimeters are proposed too. Moreover, a strategy for an accurate modelling of the instrumental drift and to distinguish it from longterm gravity changes is suggested.en
dc.language.isoEnglishen
dc.relation.ispartofAnnals of Geophysicsen
dc.relation.ispartofseries1/51 (2008)en
dc.subjecttime gravity changesen
dc.subjectgravity recorden
dc.subjectvolcanic processesen
dc.subjectair pressure admittanceen
dc.titleStrategies in the processing and analysis of continuous gravity record in active volcanic areas: the case of Mt. Vesuviusen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber67-85en
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methodsen
dc.relation.referencesARNOSO, J., J. FERNANDEZ and R. VIEIRA (2001): Interpretation of tidal gravity anomalies in Lanzarote, Canary Islands, J. Geodyn., 31, 341-354. ATKINSON, B. W. (1981): Meso-Scale Atmospheric Circulations (Academic Press, London), pp. 495. BECKER, M., L. BALESTRI , L. BARTELL, G. BERRINO, S. BONVALOT, G. CSAPÒ, M. DIAMENT, V. D’ERRICO , C. GAGNON, C. GERSTENECKER, P. ,JOUSSET, A. KOPAEV, J. LIARD, I. MARSON, B. MEURES, I. NOWAK, S. NAKAI, F. REHREN, B. RICHTER, M. SCHNÜLL, A. SOMERHAUSEN, W. SPITA, G. SZATMARI, M. VAN RUYMBEKE,H-G. WENZEL, H. WILMES, M. ZUCCHI and W. ZÜRN (1995): Microgravimetric measurements at the 1994 international comparison of absolute gravimeters, Metrologia, 32, 145-152. BECKER, M., G. BERRINO, A.G. CAMACHO, R. FALK, O. FRANCIS, J.E. FRIEDERICH, C. GAGNON, C. GERSTENECKER, G. LÄUFER, J. LIARD, B. MEURES, F.-J. NAVARRO, I. NOWAK, F. REHREN, U. RICCARDI, B. RICHTER, M. SCHNÜLL, D. STIZZA, M. VAN RUYMBEKE, P. VAUTERIN and H. WILMES (2000): Results of relative gravimeter measurements at the ICAG97 intercomparison, Bureau Gravim. Int. Bull. Inf., 85, 61-72. BERRINO, G. (1995): Absolute gravimetry and gradiometry on active volcanoes of Southern Italy, Boll. Geofis. Teor. Appl., 37 (146), 131-144. BERRINO, G. (2000): Combined gravimetry in the observation of volcanic processes in Southern Italy, J. Geodynamics, 30, 371-388. BERRINO, G. and U. RICCARDI (2000): Non-statyonary components of the gravity field at Mt. Vesuvius (Southern Italy): correlations with different aspects of its present-day dynamics, Comptes Rendus of 88th Journées Luxembourgeoises de Géodynamique (JLG), Munsbach 32-37. BERRINO, G. and U. RICCARDI (2001): Gravity tide at Mt. Vesuvius (Southern Italy): correlations with different geophysical data and volcanological implications, J. Geod. Soc. Japan, 47 (1), 121-127. BERRINO, G. and U. RICCARDI (2004): Far-field gravity and tilt signals by large earthquakes: real or instrumental effects?, Pure Appl. Geophys., 161, 1379-1397. dyn., 30, 371-388. BERRINO, G., U. COPPA, G. DE NATALE and F. PINGUE (1993a): Recent geophysical investigation at Somma- Vesuvius volcanic complex, J. Volcanol. Geotherm. Res., 53, 11-26. BERRINO, G., G. CORRADO, R. MAGLIULO and U. RICCARDI (1997): Continuous record of the gravity changes at Mt. Vesuvius, Ann. Geofis., 40 (5), 1019-1028. BERRINO, G., G. CORRADO, R. MAGLIULO and U. RICCARDI (2000): Continuous gravity record at Mount Vesuvius: a tool to monitor its dynamics, Phys. Chem. Earth A, 25 (9-11), 713-717. BERRINO, G., G. CORRADO, U. RICCARDI (2006): On the capability of recording gravity stations to detect signals coming from volcanic activity: The case of Vesuvius, J. Volcanol. Geotherm. Res., 150, 270-282. BERRINO, G., B. DUCARME and R. MAGLIULO (1993b): Gravity tide and volcanic activity in Southern Italy, in Proceedings of the XII National Meeting Gruppo Nazionale Geofisica della Terra Solida, 997-1001. BONVALOT, S., M. DIAMENT and G. GABALDA (1998): Continuous gravity recording with Scintrex CG-3M meters: a promising tool for monitoring active zones, Geophys. J. Int., 135, 470-494. BOY, J.-P., P. GEGOUT and J. HINDERER (2002): Reduction of surface gravity data from global atmospheric pressure loading, Geophys. J. Int., 149, 534-545. BOY, J.-P., J. HINDERER and P. GEGOUT (1998): Global atmospheric pressure loading and gravity, Phys. Earth Planet. Int., 109, 161-177. BUDETTA, G. and D. CARBONE (1997): Potential application of the Scintrex CG-3M gravimeter for monitoring volcanic activity: results of field trials on Mt. Etna, Sicily, J. Volcanol. Geotherm. Res., 76, 199-214. CARBONE, D., G. BUDETTA, F. GRECO and H. RYMER (2003): Combined discrete and continuous gravity observations at Mt. Etna, J. Volcanol. Geotherm. Res., 123, 123-135. CARBONE, D., L. ZUCCARELLO, G. SACCOROTTI and F. GRECO (2006): Analysis of simultaneous gravity and tremor anomalies observed during the 2002-2003 Etna eruption, Earth Planet. Sci. Lett., 245, 616-629. CHAO, B.F. (1994): The geoid and Earth rotation, in Geophysical Interpretations of Geoid, edited by P. VANICEK and N. CHRISTOU ( CRC Press, Boca Raton), 285-298. CROSSLEY, D. and J. HINDERER (1995): Global Geodynamics Project – GGP, Cahiers du Centre Europeen de Géodynamique et de Séismologie, 11, 244-271. CROSSLEY, D.J., O.G. JENSEN and J. HINDERER (1995): Effective barometric admittance and gravity residuals, Phys. Earth Planet. Int., 90, 221-241. CROSSLEY, D.J., J. HINDERER and S. ROSAT (2002): Using atmosphere- gravity correlation to derive a time-dependent admittance, Bull. Inf. Marées Terrestres, 136, 10809-10820. DAVIS, P.M. (1981): Gravity and Earth tides measured on an active volcano, Mt Etna, Sicily, J. Volcanol. Geotherm. Res., 11, 213-223. DEHANT, V. (1987): Tidal parameters for an inelastic Earth, Phys. Earth Planet. Int., 49, 97-116. DITTFELD, H.-J. (1995): Non-tidal features in the SG-record at Potsdam, Cahiers du Centre Européen de Géodynamique et de Séismologie, 11, 79-88. EANES, R.J. (1994): Diurnal and semidiurnal tides from TOPEX/POSEIDON altimetry, Eos, 75, 108. EGBERT, G.D. and L. EROFEEVA (2002): Efficient inverse modeling of barotropic ocean tides, J. Atmos. Oceanic Technol., 19, 183-204. FARRELL, W. E. (1972): Deformation of the Earth by Surface Loads, Rev. Geophys. Space Phys., 10 (3), 761-797. GOODKIND, J.M. and C. YOUNG (1991): Gravity and hydrology at Kilauea volcano, the Geysers and Miami, Cahiers du Centre Européen de Géodynamique et de Séismologie, 3, 163-167. HINDERER, J. and D. CROSSLEY (2000): Time variations and inferences on the Earth’s structure and dynamics, Surv. Geophys., 21, 1-45. HINDERER, J. and D. CROSSLEY (2004): Scientific achievements from the first phase (1997-2003) of the Global Geodynamics Project using a worldwide network of superconducting gravimeters, J. Geodyn., 38, 237-262. IANNACCONE, G., G. ALESSIO, G. BORRIELLO, P. CUSANO, S. PETROSINO, P. RICCIOLINO, G. TALARICO and V. TORELLO (2001): Characteristics of the seismicity of Vesuvius and Campi Flegrei during the year 2000, Ann. Geofis., 44 (5-6), 1075-1091. IMBÒ, G., V. BONASIA and A. LO BASCIO (1964): Marea gravimetrica all’Osservatorio Vesuviano, Ann. Osservatorio Vesuviano, 5 (S6), 161-184. IMBÒ, G., V. BONASIA and A. LO BASCIO (1965a): Variazioni della marea della crosta all’Osservatorio Vesuviano. Ann. Osservatorio Vesuviano, 7 (S6), 181-198. IMBÒ, G., L. CASERTANO and V. BONASIA (1965b): Considerazioni sismo-gravimetriche sulle manifestazioni vesuviane del Maggio 1964, in Proceedings of the XIV Convegno nazionale Associazione Geofisica Italiana, 291-300. KRONER, C. and G. JENTZSCH (1998): Comparison of air pressure reducing methods and discussion of other influences on gravity, in Proceedings of the 13th Earth Tide Symposium, Brussels, 423-430,. LE PROVOST, C., F. LYARD, J.M. MOLINES, M.L. GENCO and F. RABILLOUD (1998): A hydrodynamic ocean tide model improved by assimilating a satellite altimeterderived data set, J. Geophys. Res., 103 (C3), 5513- 5529. MELCHIOR, P. (1995): A continuing discussion about the correlation of tidal gravity anomalies and heat flow densities, Phys. Earth Planet. Int., 88, 223-256. MELCHIOR, P. and B. DUCARME (1991): Tidal gravity anomalies and tectonics, in Proceedings of the 11th Inter. Symp. Earth Tides, Helsinki, edited by J. KAKKURI, 445-454. MERRIAM, J. B. (1992): Atmospheric pressure and gravity, Geophys. J. Int., 109, 488-500. MUKAI, A., T. HIGASHI, S. TAKEMOTO, I. NAKAGAWA and I. NAITO (1995): Accurate estimation of atmospheric effects on gravity observations made with a superconducting gravity meter at Kyoto, Phys. Earth Planet. Int., 91, 149-159. MÜLLER, T. and W. ZÜRN (1983): Observation of the gravity changes during the passage of cold fronts, J. Geophys., 53, 155-162. NEUMEYER, J. (1995): Frequency dependent atmospheric pressure corrections on gravity variations by means of cross spectral analysis, Bull. Inf. Marées Terrestres, 122, 9212-9220. NEUMEYER, J., F. BARTHELMES and D. WOLF (1998): Atmospheric pressure correction for gravity data using different methods, in Proceedings of the 13th Earth Tide Symposium, Brussels, 431-438,. PETERSON, J. (1993): Observations and modelling of seismic background noise, Open File Report 93-322 (U.S. Department of Interior Geological Survey, Albuquerque, New Mexico). PETROV, L. and J.-P. BOY (2004): Study of the atmospheric pressure loading signal in VLBI observations, J. Geophys. Res., 109, B03405, 10.1029/2003JB002500. PONTE, R.M. and R.D. RAY (2002): Atmospheric pressure corrections in geodesy and oceanography: a strategy for handling air tides, Geophys. Res. Lett., 29, 2153, doi: 10.1029/2002GL016340. RABBEL, W. and J. ZSCHAU (1985): Static deformations and gravity changes at the Earth’s surface due to atmospheric loading, J. Geophys., 56, 81-99. RICCARDI, U., G. BERRINO and G. CORRADO (2002): Changes in the instrumental sensitivity for same feedback equipping LaCoste and Romberg gravity meters, Metrologia, 39, 509-515. RICCARDI, U., J. HINDERER and J.-P. BOY (2007): On the efficiency of barometric arrays to improve the corrections of atmospheric effects on gravity data, Phys. Earth Planet. Int., 161, 224-242. RICHTER, B. (1987): Das supraleitende Gravimeter, Ph.D. Thesis (Deutsche Geodät. Komm., C 329, Frankfurt am Main), pp. 124. RICHTER, B., H.G. WENZEL, W. ZÜRN and F. KLOPPING (1995): From Chandler wobble to free oscillations: comparison of cryogenic and other instruments in a wide period range, Phys. Earth Planet. Int., 91, 131-148. ROBINSON, E.S. (1989): Tidal gravity, heat flow, and the upper crust, Phys. Earth Planet. Int., 56, 181-185. ROBINSON, E.S. (1991): Correlation of tidal gravity and heat flow in eastern North America, Phys. Earth Planet. Int., 67, 231-236. SCHWIDERSKI, E.W. (1980): On charting global ocean tides. Rev. Geophys. Space. Physics., 18 (1), 243-268. SPRATT, R.S. (1982): Modelling the effect of atmospheric pressure variations on gravity, Geophys. J.R. Astron. Soc., 71, 173-186. TAMURA, Y. (1987): A harmonic development of the tidegenerating potential, Bull. Inf. Marées Terrestres, 99, 6813-6855. TORGE, W. (1989): Gravimetry (de Gruyter, Berlin, New York), pp. 465. TRIBALTO, G. and A. MAINO (1962): Rilevamento gravimetrico della zona circumvesuviana, Ann. Osservatorio Vesuviano, 6 (S4), 134-172. VAN CAMP, M. and P. VAUTERIN (2005): Tsoft: graphical and interactive software for the analysis of time series and Earth tides, Comput. Geosci., 31 (5), 631-640. VAN DAM, T. and O. FRANCIS (1998): Two years of continuous gravity measurements of tidal and non-tidal variations of gravity in Boulder, Colorado, Geophys. Res. Lett., 25, 393-396. VAN RUYMBEKE, M. (1991): New Feedback Electronics for La- Coste & Romberg Gravimeters, Cahiers du Centre Européen de Géodynamique et de Séismologie, 4, 333-337. VAN RUYMBEKE, M., R. VIEIRA, N. D'OREYE, A. SOMERHAUSEN and N. GRAMMATIKA (1995): Technological Approach from Walferdange to Lanzarote: the EDAS Concept, in Proceeding 12th Int. Symp. on Earth tides, (Science press, Beijing, China), 53-62. VIEIRA, R., M. VAN RUYMBEKE, J. FERNANDEZ, J. ARNOSO and C. DE TORO (1991): The Lanzarote underground laboratory, Cahiers du Centre Européen de Géodynamique et de Séismologie, 4, 71-86. VILARDO, G., G. DE NATALE, G. MILANO and U. COPPA (1996): The seismicity of Mt. Vesuvius, Tectonophysics, 261, 127-138. WAHR, J.M. (1981): Body tides on an elliptical, rotating, elastic and oceanless Earth, Geophys. J. R. Astr. Soc., 64, 677-703. WARBURTON, R.J. and J.M. GOODKIND (1977): The influence of barometric-pressure variations on gravity, Geophys. J. R. Astr. Soc., 48, 281-292. WENZEL, H.G. (1996): The nanoGal software: Earth tide data processing package ETERNA 3.30, Bull. Inf. Marées Terrestres, Bruxelles, 9425-9438. ZSCHAU, J. and R. WANG (1987): Imperfect elasticity in the Earth’s mantle. Implication for Earth tides and long period deformation, in Proceedings of the 9th International Symposium on Earth Tides, New York, 605-629.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorRiccardi, U.en
dc.contributor.authorBerrino, G.en
dc.contributor.authorCorrado, G.en
dc.contributor.authorHinderer, J.en
dc.contributor.departmentDipartimento di Scienze della Terra, Università degli Studi di Napoli «Federico II», Napoli, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentDipartimento di Scienze della Terra, Università degli Studi di Napoli «Federico II», Napoli, Italyen
dc.contributor.departmentEcole et Observatoire des Sciences de la Terre (EOST), Institut de Physique du Globe de Strasbourg, Université Louis Pasteur (UMR 7516 CNRS-ULP), Strasbourg (France)en
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDipartimento di Scienze della Terra, Università “Federico II” di Napoli-
crisitem.author.deptUniversità della Calabria-
crisitem.author.deptEcole et Observatoire des Sciences de la Terre (EOST), Institut de Physique du Globe de Strasbourg, Université Louis Pasteur (UMR 7516 CNRS-ULP), Strasbourg (France)-
crisitem.author.orcid0000-0003-0720-5415-
crisitem.author.orcid0000-0002-4703-2435-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Annals of Geophysics
Files in This Item:
File Description SizeFormat
05 Riccardi.pdf1.46 MBAdobe PDFView/Open
Show simple item record

Page view(s) 50

285
checked on Apr 17, 2024

Download(s) 50

282
checked on Apr 17, 2024

Google ScholarTM

Check