Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4967
DC FieldValueLanguage
dc.contributor.authorallDiaferia, I.; Dipartimento di Geologia e di Geofisica, Università degli Studi di Bari, Italyen
dc.contributor.authorallLoddo, M.; Dipartimento di Geologia e di Geofisica, Università degli Studi di Bari, Italyen
dc.contributor.authorallSchiavone, D.; Dipartimento di Geologia e di Geofisica, Università degli Studi di Bari, Italyen
dc.contributor.authorallSiniscalchi, A.; Dipartimento di Geologia e di Geofisica, Università degli Studi di Bari, Italyen
dc.date.accessioned2009-03-20T09:34:28Zen
dc.date.available2009-03-20T09:34:28Zen
dc.date.issued2008-04en
dc.identifier.urihttp://hdl.handle.net/2122/4967en
dc.description.abstractOver the last decade electromagnetic (EM) measurements have provided new constraints on the upper-crustal structure of the major fault zones in the world, both when they act as conduit and as a barrier, due to strong sensitivity of resistivity to fluids circulation and mineralization. On the track of a high impact magnetotelluric (MT) study performed across the San Andreas Fault, high resolution EM data were collected in the Colfiorito epicentral area along profiles crossing some main fault lineaments. Being the study focussed both on shallow that on intermediate resistivity distribution in the brittle upper-crust, a MT profile was integrated by several electrical resistivity tomographies (ERT). The latter were successful in locating faults even where the structures are buried by a wide covering of Quaternary deposits and in the recognition of different electrical signatures of the faults. MT resistivity model crossing Mt. Prefoglio normal fault clearly imaged the typical thrust structures of the area and a high conductive zone spatially related to the fault. Seismicity seems to be located outside such conductive area, whose behaviour suggests a fluidised and altered zone incapable of supporting significant stress internally.en
dc.language.isoEnglishen
dc.relation.ispartofAnnals of Geophysicsen
dc.relation.ispartofseries2-3/51 (2008)en
dc.subjectColfiorito fault systemen
dc.subjectmagnetotelluricsen
dc.subjectgeoelectricsen
dc.subjectfluidsen
dc.titleShallow to intermediate resistivity features of the Colfiorito Fault System inferred by DC and MT surveyen
dc.typearticleen
dc.type.QualityControlPeer-revieweden
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methodsen
dc.relation.referencesBYERLEE, J. (1993): Model for episodic flow of high-pressure water in fault zones before earthquakes, Geology, 21, 303–306. CELLO, G., C. INVERNIZZI, S. MAZZOLI and E. TONDI (2001): Fault properties and fluid flow patterns from Quaternary faults in the Apennines, Italy, Tectonophysics, 336, 63-78. CHIARALUCE, L., M.R. BARCHI, C. COLLETTINI, F. MIRABELLA, and S. PUCCI (2005): Connecting seismically active normal faults with Quaternary geological structures in a complex extensional environment: The Colfiorito 1997 case history (northern Apennines, Italy), Tectonics, 24, TC1002, doi:10.1029/2004TC001627. DIAFERIA, I., M.R. BARCHI, M. LODDO, D. SCHIAVONE and A. SINISCALCHI (2006): Detailed imaging of tectonic structures by multiscale Earth resistivity tomographies: The Colfiorito normal faults (central Italy), Geophys. Res. Lett., 33, L09305, doi:10.1029/2006GL025828. DI GIULIO, G., A. ROVELLI, F. CARA, R.M. AZZARA, F. MARRA, R. BASILI and A. CASERTA (2003): Long-duration asynchronous ground motions in the Colfiorito plain, central Italy, observed on a two-dimensional dense array, J. Geophys. Res., 108 (B10), 2486, doi:10.1029/2002JB002367. EBERHART-PHILLIPS, D., W.D. STANLEY, D.B. RODRIGUEZ, and W.J. LUTTER (1995): Surface seismic and electrical methods to detect fluids related to faulting, J. Geophys. Res., 100 (B7), 12919-12936, doi: 10.1029/94JB03256. EGBERT, G.D. (1997): Robust multiple-station magnetotelluric data analysis, Geophys. J. Int., 130, 475-496. GAMBLE, T.D., W.M. GOUBAU and J. CLARKE (1979): Magnetotellurics with a remote magnetic reference, Geophysics, 44, 53-68. GEOTOMO SOFTWARE (2002): RES2DINV-Geoelectrical imaging 2D & 3D, user manual version 3.5 (www.geoelectrical. com). INGHAM, M. (2005): High resolution electrical imaging of fault zones, Phys. Earth Plan. Int., 150, 93-105. MILLER, S. A., C. COLLETTINI, L. CHIARALUCE, M. COCCO, M.R. BARCHI and B.J.P. KAUS (2004): Aftershocks driven by a high pressure CO2 source at depth, Nature, 427, 724-727, doi:10.1038/nature02251. MIRABELLA, F. and S. PUCCI (2002): Integration of geological and geophysical data along a section crossing the region of the 1997-1998 Umbria-Marche earthquakes (Italy), Boll. Soc. Geol. It., volume speciale n.1, 891-900. RODI, W. and R.L. MACKIE (2001): Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion, Geophysics, 66, 174-187. SCHWALENBERG, K., V. RATH and V. HAAK (2002): Sensitivity studies applied to a two-dimensional resistivity model from the Central Andes, Geophys. J. Int., 150, 673-686. SIMPSON, F. and H. BAHR (2005): Practical magnetotellurics. Cambridge University Press, Cambridge UK. ISBN 0521817277. SLEEP, N.H. and M.L. BLANPIED (1992): Creep, compaction and the weak rheology of major faults, Nature, 359, 687-692. STUCCHI, E., F. MIRABELLA and M.G. CIACCIO (2006): Comparison between reprocessed seismic profiles: Seismologic and geologic data. A case study of the Colforito earthquake area, Geophysics, 71 (2), B29–B40, doi: 10.1190/1.2187709. UNSWORTH, M., G. EGBERT and J. BOOKER (1999): High-resolution electromagnetic imaging of the San Andreas fault in Central California, J. Geophys. Res., 104 (B1), 1131-1150. UNSWORTH, M.J., P.E. MALIN, G.D. EGBERT and J.R. BOOKER (1997): Internal structure of the San Andreas fault at Parkfield, California, Geology, 25 (4), 359-362. WANNAMAKER, P.E., T.G. CALDWELL, W.M. DOERNER and G.R. JIRACEK (2004): Fault zone fluids and seismicity in compressional and extensional environments inferred from electrical conductivity: the New Zealand Southern Alps and U. S. Great Basin, Earth Planets Space, 56, 1171–1176. WEAVER, J.T., A.K. AGARWAL and F.E.M. LILLEY (2000): Characterization of the magnetotelluric tensor in terms of its invariants, Geophys. J. Int., 141, 321-336.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorDiaferia, I.en
dc.contributor.authorLoddo, M.en
dc.contributor.authorSchiavone, D.en
dc.contributor.authorSiniscalchi, A.en
dc.contributor.departmentDipartimento di Geologia e di Geofisica, Università degli Studi di Bari, Italyen
dc.contributor.departmentDipartimento di Geologia e di Geofisica, Università degli Studi di Bari, Italyen
dc.contributor.departmentDipartimento di Geologia e di Geofisica, Università degli Studi di Bari, Italyen
dc.contributor.departmentDipartimento di Geologia e di Geofisica, Università degli Studi di Bari, Italyen
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.openairetypearticle-
item.grantfulltextopen-
crisitem.author.deptDipartimento di Geologia e di Geofisica, Università degli Studi di Bari, Italy-
crisitem.author.deptDipartimento di Geologia e Geofisica, Università di Bari, Italy-
crisitem.author.deptDipartimento di Geologia e Geofisica, Università di Bari, Bari, Italia-
crisitem.author.deptUniversità degli Studi di Bari-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Annals of Geophysics
Files in This Item:
File Description SizeFormat
Diaferia et al.pdf3.15 MBAdobe PDFView/Open
Show simple item record

Page view(s) 50

152
checked on Jun 30, 2022

Download(s) 50

216
checked on Jun 30, 2022

Google ScholarTM

Check