Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4885
DC FieldValueLanguage
dc.contributor.authorallLolli, B.; Dipartimento di Fisica, Universita` di Bologna, Bologna, Italy.en
dc.contributor.authorallBoschi, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione AC, Roma, Italiaen
dc.contributor.authorallGasperini, P.; Dipartimento di Fisica, Universita` di Bologna, Bologna, Italy.en
dc.date.accessioned2009-01-21T15:08:55Zen
dc.date.available2009-01-21T15:08:55Zen
dc.date.issued2009-01en
dc.identifier.urihttp://hdl.handle.net/2122/4885en
dc.description.abstractMost empirical studies on the decay of the rate of aftershock with time after a main shock assume the simple power law described by the modified Omori model (MOM). A couple of alternative models, also including an exponential decay at long times, have been proposed in the last decades: the modified stretched exponential (MSE) model and the band-limited power law (LPL). The first aim of this work is to discuss the functional properties of such models and the relations existing on their parameters. In particular, we derive, in term of common transcendental functions, the analytical integrals of the LPL and MSE rate functions, which are useful to simplify and speed up computations. We also define, as a function of the parameters of the LPL, two characteristic times tb and ta, which correspond approximately to the delay time c of the MOM and the exponential decay relaxation time t0 of the MSE, respectively. Hence, the MOM, the MSE, and the LPL models can be compared among each other in terms of the same set of four general parameters: (1) the power law exponent, (2) the initial delay time, (3) the exponential relaxation time (1 for the MOM), and (4) a normalization parameter, which can be related in some cases to the total number of potential aftershocks. A second aim of this paper is to test the ability of maximum likelihood methods to detecting the most appropriate decay model among alternatives. By the analysis of sequences simulated according to a MSE or a LPL we show that if the assumed exponential decay relaxation time is shorter than the time window over which the sequence is observed, the Akaike and Bayesian information criteria select correctly the true model (MSE or LPL). Conversely, when the relaxation time is definitely longer than the observing window, the information criteria usually prefer the MOM, but the maximum likelihood of the true model is higher, and if the data set of shocks is sufficiently large, the order of magnitude of the simulated characteristic time of the exponential decay can be estimated quite consistently. Hence, when analyzing real sequences, the possible emergence of the exponential decay might be hidden by the short duration of the time window if the standard information criteria are considered. Moreover, when the relaxation time is short, the estimated power law exponent p for the MOM results definitely higher than that assumed in the simulation. This indicates that high values of p (>1.5–2.0), sometimes observed in real sequences, might be due to the (not modeled) early startup of the negative exponential decay. Our analysis cannot decide which model is the most appropriate in describing the temporal behavior of aftershock rate after a main shock but suggests that the assumption of a model also including the exponential decay is generally preferable as it allows capture of all of the features of sequence decay.en
dc.language.isoEnglishen
dc.publisher.nameAGUen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseriesB01/114 (2009)en
dc.subjectaftershocken
dc.titleA comparative analysis of different models of aftershock rate decay by maximum likelihood estimation of simulated sequencesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB01305en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamicsen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysisen
dc.identifier.doi10.1029/2008JB005614en
dc.relation.referencesAbramowitz, M., and I. A. Stegun (1972), Handbook of Mathematical Functions, 10th ed., 1046 pp., Dover, New York. Akaike, H. (1974), A new look at the statistical model identification, IEEE Trans. Autom. Control, AC-19, 716 – 723, doi:10.1109/TAC.1974. 1100705. Carroll, D. L. (1996), Chemical laser modeling with genetic algorithms, AIAA J., 34, 338– 346, doi:10.2514/3.13069. Gasperini, P., and B. Lolli (2006), Correlation between the parameters of the aftershock rate equation: Implications for the forecasting of future sequences, Phys. Earth Planet. Inter., 156, 41 – 58, doi:10.1016/ j.pepi.2006.01.005. Dennis, J. E., and R. B. Schnabel (1983), Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, N. J. Dieterich, J. H. (1994), A constitutive law for rate of earthquake production and its application to earthquake clustering, J. Geophys. Res., 99, 2601– 2618, doi:10.1029/93JB02581. Draper, D. (1995), Assessment and propagation of model uncertainty (with discussion), J. R. Stat. Soc., Ser. B, 57, 45– 97. Gill, P. E., and W. Murray (1976), Minimization subject to bounds on the variables, NPL Rep. NAC 72, Natl. Phys. Lab., Teddington, U.K. Goffe, W., G. D. Ferrier, and J. Rogers (1994), Global optimization of statistical function with simulated annealing, J. Econometrics, 60, 65– 99, doi:10.1016/0304-4076(94)90038-8. Goldberg, D. E. (1989), Genetic Algorithms in Search, Optimization and Machine Learning, p. 77, 106–122, Addison-Wesley, Reading, Mass. Gross, S. J., and C. Kisslinger (1994), Test of models of aftershock rate decay, Bull. Seismol. Soc. Am., 84, 1571–1579. Holland, J. H. (1975), Adaptation in Natural and Artificial Systems, MIT Press, Cambridge, Mass. Hurvich, C. M., and C.-L. Tsai (1989), Regression and time series model selection in small samples, Biometrika, 76, 297–307, doi:10.1093/ biomet/76.2.297. Kisslinger, C. (1993), The stretched exponential function as an alternative model for aftershock decay rate, J. Geophys. Res., 98, 1913 – 1921, doi:10.1029/92JB01852. Lewis, P. A. W., and G. S. Shedler (1979), Simulation of nonhomogeneous Poisson process by thinning, Nav. Res. Logistics Q., 26, 403–413, doi:10.1002/nav.3800260304. Lolli, B., and P. Gasperini (2003), Aftershocks hazard in Italy Part I: Estimation of time-magnitude distribution model parameters and computation of probabilities of occurrence, J. Seismol., 7, 235–257, doi:10.1023/ A:1023588007122. Lolli, B., and P. Gasperini (2006), Comparing different models of aftershock rate decay: The role of catalog incompleteness in the first times after mainshock, Tectonophysics, 423, 43 – 59, doi:10.1016/j.tecto. 2006.03.025. Metropolis, N., and S. M. Ulam (1949), The Monte Carlo method, J. Am. Stat. Assoc., 44, 335– 341, doi:10.2307/2280232. Nanjo, K. Z., B. Enescu, R. Shcherbatov, D. L. Turcotte, T. Iwata, and Y. Ogata (2007), Decay of aftershock activity for Japanese earthquakes, J. Geophys. Res., 112, B08309, doi:10.1029/2006JB004754. Narteau, C., P. Shebalin, and M. Holschneider (2002), Temporal limits of the power law aftershock decay rate, J. Geophys. Res., 107(B12), 2359, doi:10.1029/2002JB001868. Narteau, C., P. Shebalin, S. Hainzl, G. Zoller, and M. Holschneider (2003), Emergence of a band-limited power law in the aftershock decay rate of a slider-block model, Geophys. Res. Lett., 30(11), 1568, doi:10.1029/ 2003GL017110. Narteau, C., P. Shebalin, and M. Holschneider (2005), Onset of power law aftershock decay rates in southern California, Geophys. Res. Lett., 32, L22312, doi:10.1029/2005GL023951. Ogata, Y. (1983), Estimation of the parameters in the modified Omori formula for aftershock frequencies by the maximum likelihood procedure, J. Phys. Earth, 31, 115– 124. Ogata, Y. (1988), Statistical models for earthquake occurrences and residual analysis for point processes, J. Am. Stat. Assoc., 83, 9 – 27, doi:10.2307/ 2288914. Omori, F. (1894), On after-shocks of earthquakes, J. Coll. Sci. Imp. Univ. Tokyo, 7, 111 –200. Schwarz, G. (1978), Estimating the dimension of a model, Ann. Stat., 6, 461– 464, doi:10.1214/aos/1176344136. Shlesinger, M. F., and E. W. Montroll (1984), On the Williams-Watt function of dielectric relaxation, Proc. Natl. Acad. Sci. U. S. A., 81, 1280– 1287, doi:10.1073/pnas.81.4.1280. Utsu, T. (1961), A statistical study of the occurrence of aftershocks, Geophys. Mag., 30, 521– 605.en
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorLolli, B.en
dc.contributor.authorBoschi, E.en
dc.contributor.authorGasperini, P.en
dc.contributor.departmentDipartimento di Fisica, Universita` di Bologna, Bologna, Italy.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione AC, Roma, Italiaen
dc.contributor.departmentDipartimento di Fisica, Universita` di Bologna, Bologna, Italy.en
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptUniversità di Bologna-
crisitem.author.orcid0000-0003-4186-9055-
crisitem.author.orcid0000-0002-5314-0563-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Article.pdf1.4 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

8
checked on Feb 7, 2021

Page view(s) 50

262
checked on Mar 27, 2024

Download(s)

37
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric