Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4878
DC FieldValueLanguage
dc.contributor.authorallRaspa, G.; Università La Sapienza, Roma, Italyen
dc.contributor.authorallMoscatelli, M.; CNR-IGAG, Roma, Italyen
dc.contributor.authorallStigliano, F.; CNR-IGAG, Roma, Italyen
dc.contributor.authorallPatera, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallMarconi, F.; CNR-IGAG, Roma, Italyen
dc.contributor.authorallFolle, D.; Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazilen
dc.contributor.authorallVallone, R.; CNR-IGAG, Roma, Italyen
dc.contributor.authorallMancini, M.; CNR-IGAG, Roma, Italyen
dc.contributor.authorallCavinato, G. P.; CNR-IGAG, Roma, Italyen
dc.contributor.authorallMilli, S.; Università La Sapienza, Roma, Italyen
dc.contributor.authorallCoimbra Leite Costa, J. P.; Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazilen
dc.date.accessioned2009-01-08T11:03:00Zen
dc.date.available2009-01-08T11:03:00Zen
dc.date.issued2008en
dc.identifier.urihttp://hdl.handle.net/2122/4878en
dc.description.abstractWe are presenting an attempt to evaluate the spatial variability of geotechnical parameters in the upper Pleistocene–Holocene alluvial deposits of Roma (Italy) by means of multivariate geostatistics. The upper Pleistocene–Holocene alluvial deposits of Roma are sensitive to high levels of geohazard. They occupy a sizable and significant part of the city, being the foundation for many monuments, historical neighborhoods, and archaeological areas, and the main host of the present and future subway lines. We have stored information from more than 2000 geotechnical boreholes crossing the alluvial deposits into a relational database. For the present study, only the boreholes with lithologic/textural interpretation and geotechnical information were selected. The set includes 283 boreholes and 719 samples, which have a set of geotechnical information comprising physical properties and mechanical parameters. Techniques of multivariate statistics and geostatistics were combined and compared to evaluate the estimation methods of the mechanical parameters, with special reference to the drained friction angle from direct shear test (φ′). Principal Component Analysis was applied to the dataset to highlight the relationships between the geotechnical parameters. Through cross-validation analysis, multiple linear regression, kriging, and cokriging were tested as estimators of φ′. Cross-validation demonstrates that the cokriging with granulometries as auxiliary variables is the most suitable method to estimate φ′. In addition to proving that cokriging is a good estimator of φ′, cross-validation demonstrates that input data are coherent and this allows us to use them for estimation of geotechnical parameters, although they come from different laboratories and different vintages. Nevertheless, to get the same good results of cross-validation in estimation, it is necessary for granulometries to be available at grid points. Since this information being not available at all grid points, it is expected that, in the future, textural information can be derived in an indirect way, i.e., from lithologic/textural spatial reconstructions.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofEngineering Geologyen
dc.relation.ispartofseries/101 (2008)en
dc.subjectAlluvial depositsen
dc.subjectGeotechnical propertiesen
dc.subjectPrincipal Component Analysisen
dc.subjectMultivariate geostatisticsen
dc.subjectRomaen
dc.titleGeotechnical characterization of the upper Pleistocene-Holocene alluvial deposits of Roma (Italy) by means of multivariate geostatistics: Cross-validation resultsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber251-268en
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.04. Statistical analysisen
dc.identifier.doi10.1016/j.enggeo.2008.06.007en
dc.relation.referencesAmanti, M., Gisotti, G., Pecci, M., 1995. I dissesti a Roma. In: Funiciello, R. (Ed.), La geologia di Roma; il centro storico. Memorie Descrittive della Carta Geologica d'Italia, vol. 50, pp. 219–248. Ambrosetti, P., Bonadonna, F.P., 1967. Revisione dei dati sul Plio-Pleistocene di Roma. Atti Accademia Gioenia di Scienze Naturali 18, 33–72. Ambrosini, S., Castenetto, S., Cevolani, F., Di Loreto, E., Funiciello, R., Liperi, L., Molin, D., 1986. Risposta sismica dell'area urbana di Roma in occasione del terremoto del Fucino del 13 gennaio 1915. Memorie della Società Geologica Italiana 35, 445–452. Amorosi, A., Milli, S., 2001. Late Quaternary depositional architecture of Po and Tevere River deltas (Italy) and worldwide comparison with coeval deltaic successions. Sedimentary Geology 144 (3–4), 357–375. Antonio-Carpio, R.G., Perez-Flores, M.A., Camargo-Guzman, D., Alanis-Alcantar, A., 2004. Use of resistivity measurements to detect urban caves in Mexico City and to assess the related hazard. Natural Hazards and Earth System Sciences 4, 541–547. Au, S.W.C., 1998. Rain-induced slope instability in Hong Kong. Engineering Geology 51, 1–36. Baise, L.G., Higgins, R.B., 2003. Geostatistical methods in site characterization. In: Der Kiureghian, A., Madanat, S., Pestana, J.M. (Eds.), Applications of Statistics and Probability in Civil Engineering. Millpress, Rotterdam, pp. 1195–1202. Bellotti, P., Chiocchini, U., Castorina, F., Tolomeo, L., 1994. Le unità clastiche pliopleistoceniche tra Monte Mario (città d Roma) e la costa tirrenica presso Focene: alcune osservazioni sulla stratigrafia sequenziale. Bollettino del Servizio Geologico Italiano 113, 3–24. Bellotti, P., Milli, S., Tortora, P., Valeri, P., 1995. Physical stratigraphy and sedimentology of the late Pleistocene–Holocene Tiber Delta depositional sequence. Sedimentology 42 (4), 617–634. Bonadonna, F.,1968. Studi sul Pleistocene del Lazio V. La biostratigrafia di Monte Mario e la “fauna malacologica mariana” di Cerulli-Irelli. Memorie della Società Geologica Italiana 7, 261–321. Boschi, E., Caserta, A., Conti, C., Di Bona, M., Funiciello, R., Malagnini, L., Marra, F., Martines, G., Rovelli, A., Salvi, S., 1995. Resonance of subsurface sediments: an unforeseen complication for designers of Roman columns. Bulletin of the Seismological Society of America 85 (1), 320–324. Bourdeau, P.L., Amundaray, J.I., 2005. Non-parametric simulation of geotechnical variability. Géotechnique 55, 95–108. Bourgine, B., Dominique, S., Marache, A., Thierry, P., 2006. Tools and methods for constructing 3D geological models in the urban environment: the case of Bordeaux. Proceedings of the 10th IAEG Congress, International Association for Engineering Geology, 6–10 September 2006, Nottingham, Paper n° 72. Bozzano, F., Andreucci, A., Gaeta, M., Salucci, R., 2000. A geological model of the buried Tiber River valley beneath the historical centre of Rome. Bulletin of Engineering Geology and the Environment 59, 1–21. Bozzano, F., Caserta, A., Govoni, A., Marra, F., Martino, S., 2008. Static and dynamic characterization of alluvial deposits in the Tiber River Valley: new data for assessing potential ground motion in the City of Rome. Journal of Geophysical Research 113, B01303. doi:10.1029/2006JB004873. Burkett, Virginia R., Zikoski, D.B., Hart, D.A., 2003. Sea-level rise and subsidence: implications for flooding in New Orleans, Louisiana. U.S. Geological Survey Subsidence Interest Group Conference, Proceedings for the Technical Meeting, USGS Water Resources Division, Open File Report Series 03-308, pp. 63–70. Campolunghi, M.P., Capelli, G., Funiciello, R., Lanzini, M., 2007. Geotechnical studies for foundation settlement in Holocenic alluvial deposits in the City of Rome (Italy). Engineering Geology 89 (1–2), 9–35. Canil, K., Macedo, E.S., Gramani,M.F., Almeida Filho, G.S., Yoshikawa, N.K.,Mirandola, F.A., Viera, B.C., Baida, L.M.A., Augusto Filho, O., Shinohara, E.J., 2004.Mapeamento de risco em assentamentos precarios nas zonas sul e parte da oeste no municipio de Sao Paulo (SP). Hazard mapping in the western and southern urban areas of Sao Paulo City, Sao Paulo. Proceedings of the “Simposio brasileiro de Cartografia geotecnica e geoambiental”, 16–18 of November 2004, Sao Carlos, Brazil. Carbognin, L., Teatini, P., Tosi, L., 2004. Eustacy and land subsidence in the Venice lagoon at the beginning of the new millennium. Journal of the Marine System 51, 345–353. Carboni, M.G., Iorio, D., 1997. Nuovi dati sul Plio-Pleistocene marino del sottosuolo di Roma. Bollettino della Società Geologica Italiana 116, 435–451. Cavarretta, G., Cavinato, G.P., Mancini, M., Moscatelli, M., Patera, A., Stigliano, F., Vallone, R., Milli, S., Garbin, F., Storoni, S., 2005a. Geological and geotechnical modelling of the City of Rome. Proceedings of GEOITALIA 2005 — V Forum Italiano di Scienze della Terra, 23–24 of September 2003, Spoleto. Cavarretta, G., Cavinato, G., Mancini, M., Moscatelli, M., Patera, A., Raspa, G., Stigliano, F., Vallone, R., Folle, D., Garbin, F., Milli, S., Storoni Ridolfi, S., 2005b. I terreni di Roma sotto l'aspetto della geologia tecnica. In: Gisotti, G., Pazzagli, G., Garbin, F. (Eds.), La IV dimensione — Lo spazio sotterraneo di Roma. Geologia dell'Ambiente, Supplemento 4/2005, pp. 33–46. Chang, M., Chiu, Y., Lin, S., Ke, T., 2005. Preliminary study on the 2003 slope failure in Woo-wan-chai Area, Mt. Ali Road, Taiwan. Engineering Geology 80, 93–114. Chilès, J.P., Delfiner, P., 1999. Geostatistics: modelling spatial uncertainty. Wiley, New York. 695 pp. Chiocci, F.L., Milli, S., 1995. Construction of a chronostratigraphic diagram for a highfrequency sequence: the 20 ky B.P. to Present Tiber depositional sequence. Il Quaternario 8, 339–348. Cifelli, F., Donati, S., Funiciello, F., 1999. Distribution of effects in the urban area of Rome during the October 14, 1997 Umbria Marche earthquake. Physics and Chemistry of the Earth 24 (6), 483–487. Cifelli, F., Donati, S., Funiciello, F., Tertulliani, A., 2000. High-density macroseismic survey in urban areas; Part 2, results for the City of Rome, Italy. Bulletin of the Seismological Society of America 90 (2), 298–311. Conato, V., Esu, D., Malatesta, A., Zarlenga, F.,1980. New data on the Pleistocene of Rome. Quaternaria 22, 131–176. Corazza, A., Lanzini, M., Rosa, C., Salucci, R., 1999. Caratteri stratigrafici, idrogeologici e geotecnici delle alluvioni tiberine nel settore del centro storico di Roma. Il Quaternario 12, 215–235. Dawson, K.M., Baise, L.G., 2005. Three-dimensional liquefaction potential analysis using geostatistical interpolation. Soil Dynamics and Earthquake Engineering 25, 369–381. DeGroot, D.J., 1996. Analyzing spatial variability of in situ soil properties. In: Shackleford, C.D., Nelson, P.P., Roth, M.J.S. (Eds.), Uncertainty in the Geologic Environment: From Theory to Practice. ASCE Geotechnical Special Publication No. 58, Madison, WI, pp. 210–238. Denis, A., Breysse, D., Cremoux, F., 2000. Traitements et analyse des mesures de diagraphies diffèrès pour la reconnaissance gèotechnique. Bulletin of Engineering Geology and the Environment 58, 309–319. Deutsch, C.V., Journel, A.G., 1998. Geostatistical Software Library and User's Guide. Oxford University Press. 369 pp. Duman, T.Y., Can, T., Ulusay, R., Kecer, M., Emre, O., Ates, S., Gedik, I., 2005. A geohazard reconnaissance study based on geoscientific information for development needs of the western region of Istanbul (Turkey). Environmental Geology 48 (7), 871–888. El Gonnouni, M., Riou, Y., Hicher, P.Y., 2005. Geostatistical method for analysing soil displacement from underground urban construction. Géotechnique 55, 171–182. Evangelista, A.,1991. Cavità e dissesti nel sottosuolo dell'area napoletana. Proceedings of the congress “Rischi naturali e impatto antropico nell'area metropolitana napoletana”, Napoli. Faccenna, C., Funiciello, R., Marra, F., 1995. Inquadramento geologico e strutturale dell'area romana. In: Funiciello, R. (Ed.), La geologia di Roma; il centro storico. Memorie Descrittive della Carta Geologica d'Italia, 50, pp. 31–47. Fäh, D., Iodice, C., Suhadolc, P., Panza, G.,1995. Application of numerical simulations for a tentative seismic microzonation of the city of Rome. Annali di Geofisica 38, 607–616. Fenton, G.A. (Ed.), 1996. Probabilistic Methods in Geotechnical Engineering. Workshop presented at ASCE GeoLogan'97 Conference, Logan, Utah. July 15, 1997. Fenton, G.A., Griffiths, D.V., 2002. Probabilistic foundation settlement on spatially random soil. Journal of Geotechnical and Geoenvironmental Engineering 128, 381–390. Florindo, F., Karner, D.B., Marra, F., Renne, P.R., Roberts, A.P., Weaver, R., 2007. Radioisotopic age constraints for glacial terminations IX and VII from aggradational sections of the Tiber River delta in Rome, Italy. Earth and Planetary Science Letters 256, 61–80. Folle, D., Raspa, G., Mancini, M., Moscatelli, M., Patera, A., Stigliano, F.P., Vallone, R., Cavinato, G.P., Cavarretta, G., Milli, S., Garbin, F., Storoni Ridolfi, S., 2006. Geotechnical modeling of the subsoil of Rome (Italy) by means of multivariate geostatistics. Proceedings of the XI International Congress. International Association for Mathematical Geology, Liège, Belgium, 3–8 September 2006. Funiciello, R. (Ed.),1995. La geologia di Roma. Il centro storico. Memorie descrittive della Carta geologica d'Italia. Servizio Geologico d'Italia, 50, 550 pp. Funiciello, R., Giordano, G. (Eds.), 2005. Carta Geologica del Comune di Roma, Vol. 1. CDROM. Università di Roma TRE-Comune di Roma-DDS Apat. Georgiannou, V.N., Burland, J.B., Hight, D.W., 1990. The ungrained behaviour of clayey sands in triaxial compression and extension. Géotechnique 40 (3), 431–449. Glassey, P., Morrison, B., 1998. Dunedian urban pilot study — a hazard information system. Proceedings the 10th Colloquium of the Spatial Information Research Centre, University of Otago, New Zealand, 16–19 November 1998, pp. 89–96. Goovaerts, P., 1997. Geostatistics for Natural Resources Evaluation. Oxford University Press. 483 pp. Hack, R., Orlic, B., Ozmutlu, S., Zhu, S., Rengers, N., 2006. Three and more dimensional modelling in geo-engineering. Bulletin of Engineering Geology and the Environment 65, 143–153. Haldar, A., Miller, F.J., 1984a. Statistical estimation of cyclic strength of sand. Journal of Geotechnical Engineering 110, 1785–1802. Haldar, A., Miller, F.J., 1984b. Statistical estimation of relative density. Journal of Geotechnical Engineering 110, 525–530. Haldar, A., Tang,W.H., 1979. Probabilistic evaluation of liquefaction potential. Journal of Geotechnical Engineering 105, 145–163. Härdle, W., Simar, L., 2007. Applied Multivariate Statistical Analysis, Second edition. Springer–Verlag, Berlin. 458 pp. Jaksa, M.B. (1995). The influence of spatial variability on the geotechnical design properties of a stiff, overconsolidated clay. Ph.D thesis, University of Adelaide, Australia. Jaksa, M.B., Kaggwa,W.S.,Brooker, P.I.,1993.Geostatisticalmodellingof the spatial variation of the shear strength a stiff, overconsolidated clay. Proceedings of the conference on probabilistic methods in geotechnical engineering, Canberra, pp. 185–194. Jaksa, M.B., Brooker, P.I., Kaggwa, W.S., 1997. Modeling the spatial variability of the undrained shear strength of clay soil using geostatistics. In: Baafi, E.Y., Schofield, N.A. (Eds.), Geostatistics Wollongong '96, vol. 2, pp. 1284–1295. Jones, A.L., Kramer, S.L., Arduino, P., 2002. Estimation of uncertainty in geotechnical properties for performance-based earthquake engineering. PEER 2002/16, Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley. Jones, T., Middelmann, M., Corby, N. (Eds.), 2005. Natural hazard risk in Perth, Western Australia. Cities Project Perth — Main report. Australian Government, Geoscience Australia. 352 pp. Lacasse, S., Nadim, F., 1996. Uncertainties in characterizing soil properties. In: Shackleford, C.D., Nelson, P.P., Roth, M.J.S. (Eds.), Uncertainty in the Geologic Environment: From Theory to Practice. ASCE Geotechnical Special Publication No. 58, Madison, WI, pp. 49–75. Lenz, J.A., Baise, L.G., 2007. Spatial variability of liquefaction potential in regional mapping using CPT and SPT data. Soil Dynamics and Earthquake Engineering 27, 690–702. Liu, B.L., Li, K.S., Lo, S.-C.R., 1993. Effect of variability on soil behaviour: a particulate approach. Proceedings of the conference on probabilistic methods in geotechnical engineering, Canberra, pp. 201–205. Liu, C.-N., Chen, C.-H., 2006. Mapping liquefaction potential considering spatial correlations of CPT measurements. Journal of Geotechnical and Geoenvironmental Engineering 132, 1178–1187. Marra, F., Rosa, C., 1995. Stratigrafia e assetto geologico dell'area romana. In: Funiciello, R. (Ed.), La geologia di Roma; il centro storico. Vol. 50 of Memorie Descrittive della Carta Geologica d'Italia. Servizio Geologico d'Italia, pp. 49–118. Marra, F., Rosa, C., De Rita, D., Funiciello, R., 1998. Stratigraphic and tectonic features of the middle Pleistocene sedimentary and volcanic deposits in the area of Rome (Italy). Quaternary International 47–48, 51–63. Milli, S., 1992. Analisi di Facies e Ciclostratigrafia in Depositi di Piana Costiera e Marino Marginali. Un esempio nel Pleistocene del Bacino Romano. Ph.D. Thesis, Università degli Studi di Roma qLa Sapienzaq. Milli, S., 1994. High-frequency sequence stratigraphy of the Middle-Late Pleistocene Holocene deposits of the Roman Basin (Rome, Italy): relationships between highfrequency eustatic cycles, tectonic and volcanism. Proceedings of the High Resolution Sequence Stratigraphy Conference: two perspectives of regional physical stratigraphy, outcrop and high-resolution seismic, Tremp, Spain, 20–27 June 1994. Milli, S., 1997. Depositional settings and high-frequency sequence stratigraphy of the middle-upper pleistocene to Holocene deposits of the Roman basin. Geologica Romana 33, 99–136. Milli, S., 2006. The sequence stratigraphy of the Quaternary successions: implications about the origin and filling of incised valleys and the mammal fossil record. Workshop “Thirty years of Sequence Stratigraphy: Applications, Limits and Prospects, Bari, Italy, 2 October 2006. Nathanail, C.P., Rosenbaum, M.S.,1998. Spatial management of geotechnical data for site selection. Engineering Geology 50, 347–356. Ni, Q., Tan, T.S., Dasari, G.R., Hight, D.W., 2004. Contribution of fines to the compressive strength of mixed soils. Géotechnique 54 (9), 561–569. Ni, Q., Dasari, G.R., Tan, T.S., 2006. Equivalent granular void ratio for characterization of Singapore's Old Alluvium. Canadian Geotechnical Journal 43 (6), 563–573. Nobre, M.M., Sykes, J.F., 1992. Application of Bayesian kriging to subsurface conditions. Canadian Geotechnical Journal 29, 589–598. Olsen, K.B., Akinci, A., Rovelli, A., Marra, F., Malagnini, L., 2006. 3D ground-motion estimation in Rome, Italy. Bulletin of the Seismological Society of America 96, 133–146. Ovando-Shelley, E., Romo, Miguel P., Contreras, N., Giralt, A., 2003. Effects on soil properties of future settlements in downtown Mexico City due to ground water extraction. Geofisica Internacional 42, 185–204. Panza, G.F., Vaccari, F., Romanelli, F., 2000. Realistic modelling of waveforms in laterally heterogeneous anelastic media by modal summation. Geophysical Journal International 143, 340–352. Panza, G.F., Vaccari, F., Romanelli, F., 2001. Realistic modeling of seismic input in urban areas: a UNESCO-IUGS-IGCP Project. Pure and Applied Geophysics 158, 2389–2406. Parsons, R.L., Frost, J.D., 2002. Evaluating Site Investigation Quality using GIS and Geostatistics. Journal of Geotechnical and Geoenvironmental Engineering 128, 451–461. Phien-wej, N., Giao, P.H., Nutalaya, P., 2006. Land subsidence in Bangkok, Thailand. Engineering Geology 82, 187–201. Phoon, K.-K., Kulhawy, F.H., 1996. On quantifying inherent soil variability. In: Shackleford, C.D., Nelson, P.P., Roth, M.J.S. (Eds.), Uncertainty in the Geologic Environment: From Theory to Practice. ASCE Geotechnical Special Publication No. 58, Madison, WI, pp. 326–340. Phoon, K.-K., Kulhawy, F.H.,1999a. Characterization of geotechnical variability. Canadian Geotechnical Journal 36, 612–624. Phoon, K.-K., Kulhawy, F.H., 1999b. Evaluation of geotechnical property variability. Canadian Geotechnical Journal 27, 617–630. Phoon, K.-K., Quek, S.-T., An, P., 2004. Geostatistical analysis of cone penetration test (CPT) sounding using the modified Bartlett test. Canadian Geotechnical Journal 41, 356–365. Pitman, T.D., Robertson, P.K., Sego, D.C., 1994. Influence of fines on the collapse of loose sands. Canadian Geotechnical Journal 31 (5), 728–739. Popescu, R., Prevost, J.H., Deodatis, G., 1997. Effects of spatial variability on soil liquefaction: Some design recommendations. Géotechnique 47, 1019–1036. Posamentier, H.W., Allen, G.P., 1999. Siliciclastic sequence stratigraphy — concepts and applications. SEPM Concepts in sedimentology and paleontology # 7. Rose, A.C., 1924. Practical field tests for subgrade soils. Public Roads 5, 10–15. Rosenbaum, M.S., Rosén, L., Gustafson, G., 1997. Probabilistic models for estimating lithologies. Engineering Geology 47, 43–55. Rovelli, A., Caserta, A., Malagnini, L., Marra, F., 1994. Assessment of potential ground motion in the city of Rome. Annali di Geofisica 37, 1745–1769. Saporta, G., 1990. Probabilités Analyse des données et Statistique. Editions Technip, Paris. 493 pp. Sitharam, T.G., Samui, P., 2007. Geostatistical modelling of spatial and depth variability of SPT data for Bangalore. Geomechanics and Geoengineering 2, 307–316. Souliè, M., Montes, P., Silvestri, V., 1990. Modeling spatial variability of soil parameters. Canadian Geotechnical Journal 27, 617–629. Terzaghi, K., 1955. Influence of geologic factors on the engineering properties of sediments. Economic Geology 50, 557–618. Thevanayagam, S., Mohan, S., 2000. Intergranular state variables and stress–strain behaviour of silty sands. Géotechnique 50 (1), 1–23. Thompson, E.M., Baise, L.G., Kayen, R.E., 2007. Spatial correlation of shear-wave velocity in the San Francisco Bay Area sediments. Soil Dynamics and Earthquake Engineering 27, 144–152. Van der Merwe, J.H., 1997. GIS-aided land evaluation and decision-making for regulating urban expansion: A South African case study. GeoJournal 43, 135–151. Vannucchi, G., 1985. Analisi probabilistica speditiva in geotecnica e fondazioni. Rivista Italiana di Geotecnica 19, 77–87. Ventriglia, U. (Ed.),1971. Geologia della Città di Roma.Amministrazione Provinciale di di Roma, Roma, Italy. Ventriglia, U. (Ed.), 2002. Geologia del territorio del Comune di Roma. Provincia di Roma, Roma, Italy. Wackernagel, H., 2003. Multivariate geostatistics: an introduction with applications. Springer–Verlag, Berlin. 387 pp. Zlatović, S., Ishihara, K., 1995. On the influence of non-plastic fines on residual strength. Proceedings of IS-Tokio 1995, 1st International Conference on Earthquake Geotechnical Engineering, Tokio, Japan, pp. 239–244.en
dc.description.obiettivoSpecifico2.3. TTC - Laboratori di chimica e fisica delle rocceen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorRaspa, G.en
dc.contributor.authorMoscatelli, M.en
dc.contributor.authorStigliano, F.en
dc.contributor.authorPatera, A.en
dc.contributor.authorMarconi, F.en
dc.contributor.authorFolle, D.en
dc.contributor.authorVallone, R.en
dc.contributor.authorMancini, M.en
dc.contributor.authorCavinato, G. P.en
dc.contributor.authorMilli, S.en
dc.contributor.authorCoimbra Leite Costa, J. P.en
dc.contributor.departmentUniversità La Sapienza, Roma, Italyen
dc.contributor.departmentCNR-IGAG, Roma, Italyen
dc.contributor.departmentCNR-IGAG, Roma, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentCNR-IGAG, Roma, Italyen
dc.contributor.departmentUniversidade Federal do Rio Grande do Sul, Porto Alegre, Brazilen
dc.contributor.departmentCNR-IGAG, Roma, Italyen
dc.contributor.departmentCNR-IGAG, Roma, Italyen
dc.contributor.departmentCNR-IGAG, Roma, Italyen
dc.contributor.departmentUniversità La Sapienza, Roma, Italyen
dc.contributor.departmentUniversidade Federal do Rio Grande do Sul, Porto Alegre, Brazilen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversità La Sapienza, Roma, Italy-
crisitem.author.deptIstituto di Geologia Ambientale e Geoingegneria (IGAG).-
crisitem.author.deptCNR, Istituto di Geologia Ambientale e Geoingegneria-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptCNR-IGAG, Roma, Italy-
crisitem.author.deptUniversidade Federal do Rio Grande do Sul, Porto Alegre, Brazil-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptCNR, Istituto di Geologia Ambientale e Geoingegneria-
crisitem.author.deptCNR-IGAG-
crisitem.author.deptDipartimento di Scienze della Terra, SAPIENZA Universit`a di Roma, P. le Aldo Moro 5, 00185 Roma, Italy-
crisitem.author.deptUniversidade Federal do Rio Grande do Sul, Porto Alegre, Brazil-
crisitem.author.orcid0000-0001-7902-2322-
crisitem.author.orcid0000-0001-7641-4689-
crisitem.author.orcid0000-0003-1208-9412-
crisitem.author.orcid0000-0001-7909-4641-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Geotechnical characterization of the upper Pleistocene.pdfManuscript6.12 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 5

33
checked on Feb 10, 2021

Page view(s) 5

662
checked on Apr 20, 2024

Download(s) 1

4,620
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric