Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorallMeo, M.; University of Bath, UKen
dc.contributor.authorallTammaro, U.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallCapuano, P.; University of Salerno, Italyen
dc.description.abstractGround deformations are observed in connection with volcanic activity, and therefore, geodetic monitoring can provide significant indication of changes of equilibrium conditions. The aim of this paper is to study the deformation of Mount Vesuvius (Italy) caused by overpressure sources at various depths, using a commercial (Ansys) 3D finite element code, in the framework of linear elastic isotropic material behavior. Both homogenous and heterogeneous media with carbonate basement were analyzed to understand the influence of topography on the ground deformations. The topography of the Somma-Vesuvius was taken into account, using a digital terrain model, and the carbonate basement was schematically modelled by assuming two horizontal layers with different Young moduli. The presence of a strong deviation from axially symmetric pattern of the displacement field, and of small subsidence areas, was found. These characteristics are completely unknown from the simple Mogi model and by simplified topography model, as verified by ad hoc simulations. These preliminary results, showing areas of the volcanic edifice experiencing high deformation, can improve the determination of the sources of deformations, i.e. the most relevant problem in the volcano monitoring. Moreover, the knowledge of the deformation pattern, including the topography effects, can provide significant indications to optimize the location of sensors and the characteristics needed to design an efficient and reliable geodetic monitoring network able to detect shallow intrusion events.en
dc.description.sponsorshipIstituto Nazionale di Geofisica e Vulcanologia and Dipartimento della Protezione Civileen
dc.relation.ispartofInternational Journal of non linear mechanicsen
dc.relation.ispartofseries/43 (2008)en
dc.subjectGround deformationsen
dc.subjectGeodetic monitoringen
dc.titleInfluence of topography on ground deformation at Mt.Vesuvius (Italy) by finite element modellingen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.relation.referencesP. Capuano, P. Gasparini, J. Virieux, A. Zollo, R. Casale, M. Yeroyanni (Eds.), The Internal Structure of Mt. Vesuvius: A Seismic Tomography Investigation, Liguori Editore, Napoli, 2003, pp. 595, ISBN: 88-207- 3503-2. A. Zollo, P. Gasparini, J. Virieux, H. Le Meur, G. De Natale, G. Biella, E. Boschi, P. Capuano, R. De Franco, P. Dell’Aversana, R. De Matteis, I. Guerra, G. Iannaccone, L. Mirabile, G. Vilardo, Seismic evidence for a low velocity zone in the upper crust beneath Mount Vesuvius, Science 274 (1996) 592–594. R. Di Stefano, C. Chiarabba, Active source tomography at Mt. Vesuvius: constraints for the magmatic system, J. Geophys. Res. 107 (2002) 2278–2292. G. De Natale, C. Troise, R. Trigila, D. Dolfi, C. Chiarabba, Seismicity and 3-D substructure at Somma-Vesuvius volcano: evidence for magma quenching, Earth Planet. Sci. Lett. 221 (2004) 181–196. E. Auger, P. Gasparini, J. Virieux, A. Zollo, Seismic evidence of an extended magmatic sill under Mt. Vesuvius, Science 294 (2001) 1510–1512. P. Fulignati, P. Marianelli, A. Sbrana, New insight on the thermometamorphic–metasomatic magma chamber shell of the 1944 eruption of Vesuvius, Acta Vulcanol. 10 (2000) 47–54. H.E. Belkin, B. De Vivo, Fluid inclusion studies of ejected nodules from plinian eruptions at Mt. Vesuvius, J. Volcanol. Geotherm. Res. 58 (1993) 89–100. A. Lomax, A. Zollo, P. Capuano, J. Virieux, Precise, absolute earthquake location under Somma-Vesuvius volcano using a new three-dimensional velocity model, Geophys. J. Int. 146 (2) (2001) 313–331. O. Mogi, Relations between the eruptions of various volcanoes and the deformations of the ground surface around them, Bull. Earthquake Res. Inst. Univ. Tokyo 36 (1958) 209–225. D.F. McTigue, P. Segall, Displacements and tilts from dip-slip faults and magma chambers beneath irregular surface topography, Geophys. Res. Lett. 15 (1988) 601–604. V. Cayol, F.H. Cornet, Effects of topography on the interpretation of the deformation field of prominent volcanoes, Application to Etna, Geophys. Res. Lett. 25 (11) (1998) 1979–1982. C.A. Williams, G. Wadge, Effects of topography on magma deformation models: application to Mt. Etna and radar interferometry, Geophys. Res. Lett. 25 (1998) 1549–1552. E. Trasatti, C. Giunchi, M. Bonafede, Effects of topography and rheological layering on ground deformation in volcanic regions, J. Volcanol. Geotherm. Res. 122 (2003) 89–110. G. Russo, G. Giberti, Numerical modeling of surface deformations on Mt. Vesuvius volcano (Italy) in presence of asymmetric elastic heterogeneities, J. Volcanol. Geotherm. Res. 133 (2004) 41–54. L. Lungarini, C. Troise, M. Meo, G. De Natale, Finite element modelling of topographic effects on elastic ground deformation at Mt. Etna, J. Volcanol. Geotherm. Res. 144 (2005) 257–271. Gasparini and Tomoves working group, Looking inside Mount Vesuvius, EOS, 79(19) (1998) 229–232. R. De Matteis, D. Latorre, A. Zollo, J. Virieux, 1-D P-velocity models of Mt. Vesuvius volcano from the inversion of TomoVes96 First Arrival Time Data, Pageoph 157 (2000) 1643–1661. A. Zollo, L. D’Auria, R. De Matteis, A. Herrero, J. Virieux, P. Gasparini, Bayesian estimation of 2-D P-velocity models from active seismic arrival time data: Imaging of the shallow structure of Mt. Vesuvius (Southern Italy), Geophys. J. Int. 151 (2002) 566–582. H. Akaike, A new look at the statistical model identification, IEEE Trans. Autom. Contr. 6 (1974) 716–723. X. Goldberg, Genetic algorithm, in: Search, Optimization and Machine Learning, Addison-Wesley, Boston. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes, Cambridge University Press, Cambridge, 1986. W.J. Lutter, R.L. Nowack, Inversion of crustal structure using reflections from the ASSCAL Ouachita experiment, J. Geophys. Res. 95 (1990) 4633–4646. A. Tarantola, B. Valette, Inverse problems = quest for information, J. Geophys. 50 (1982) 159–170.en
dc.description.obiettivoSpecifico1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attiveen
dc.description.journalTypeJCR Journalen
dc.contributor.authorMeo, M.en
dc.contributor.authorTammaro, U.en
dc.contributor.authorCapuano, P.en
dc.contributor.departmentUniversity of Bath, UKen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentUniversity of Salerno, Italyen
item.fulltextWith Fulltext-
item.grantfulltextrestricted- of Bath, Department of Mechanical Engineering, BA27AY Bath, UK.- Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-à degli Studi di Salerno- Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
IJNLM_2008.pdfArticle1.97 MBAdobe PDF
Show simple item record


checked on Feb 10, 2021

Page view(s) 50

checked on Jun 30, 2022


checked on Jun 30, 2022

Google ScholarTM