Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4854
DC FieldValueLanguage
dc.contributor.authorallSchivardi, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.date.accessioned2008-12-16T14:16:28Zen
dc.date.available2008-12-16T14:16:28Zen
dc.date.issued2007-06-15en
dc.identifier.urihttp://hdl.handle.net/2122/4854en
dc.description.abstractThe broad European and Mediterranean region is characterized by an extremely com- plex tectonic setting, driven by the ma jor convergence between Eurasian and African plates. A detailed model of the upper mantle in this region is fundamental to improve our understanding of its geodynamical evolution. Seismic tomography can help to ad- dress this problem modeling seismic speed anomalies, that can be related to different tectonic features, such as continental roots, rifting areas, magmatic provinces, plumes or subducting slabs. Due to high seismicity rates and dense seismograph coverage, this region has been the sub ject of many tomographic studies from regional to local scale. Traveltime high resolution models of P-wave speed anomalies [Spakman et al., 1993; Piromal lo and Morel li , 2003] have illuminated the deep structure of the mantle, but at shallow depth they often suffer from uneven ray coverage, being strongly dependent on station and epicenter distribution. Regional S-wave velocity models have been re- trieved from the analysis of surface wave group or phase velocity [Ritzwol ler and Levshin , 1998; Vil lase˜ nor et al., 2001], from waveform inversion of surface waves [Marquering and Snieder , 1996] or both surface and body waves [Marone et al., 2004]. However, the non-optimal distribution of observatories and seismic sources has affected regional to- mographic models. Global models derived from surface wave data image the large-scale structures of the region, but their resolution is insufficient to describe its complexity [Shapiro and Ritzwol ler , 2002; Boschi and Ekstr¨ om , 2002; Ritsema et al., 1999; Zhou et al., 2006; Trampert and Woodhouse , 1995]. Global models with finer parameteriza- tion on Mediterranean [Boschi et al., 2004] have been proposed and recent modeling of surface waves from ambient noise gave new insights into the shallowest European upper mantle [Yang et al., 2006]. The increased availability of high quality seismic records from permanent observato- ries and from the recent temporary deployment RETREAT in the Northern Apennines gave us the opportunity to exploit new data, that can provide new and finer constraints to the tomographic problem. We present in this thesis a new surface wave tomography study, aimed at exploiting the high sensitivity of these waves to shallow structure and their wide spatial coverage in the complex sources-stations distribution of the European and Mediterranean domain. The inverse problem of obtaining a VS three-dimensional model from analysis of surface wave can be solved in different ways. [Marone et al., 2004] use the partitioned waveform inversion of [Van der Lee and Nolet , 1997], where the 1-D average S-velocity structure along each path is first determined by non-linear waveform fitting, and in a second step the 1-D path averaged structures are combined in a damped least-squares linear inversion for a 3-D S-velocity model. [Shapiro and Ritzwol ler , 2002] in a first step estimate 2-D dispersion maps with a linear tomographic inversion of path average fundamental mode group and phase velocities, and afterwards apply a Monte-Carlo method to perform the non-linear inversion of the dispersion curves at each geographical point and retrieve the 3-D shear-velocity model. [Boschi and Ekstr¨om , 2002] carry out a single non-linear inversion of phase anomaly measurements making use of JWKB ray-theoretical sensitivity kernels computed in a reference 3-D model. [Zhou et al., 2006] invert long period fundamental mode phase delays with finite-frequency 3-D Born approximation kernels, calculated in a reference 1-D model. We will proceed with a 2 steps scheme, first inverting group path averaged speeds for a regionalized group velocity model assuming a linearized ray theoretical wave propagation. In a second step, we will use the group velocity maps as data to perform a non-linear iterative depth inversion for the local 1-D structure, accounting for the lateral variations of the Crust. This thesis presents a new model along with a discussion of the robustness and resolution of its main features. We will firstly present the group velocity measurement technique and an analysis of measurement errors (Chapter 2), then we will introduce the linear inversion of the regional data starting from a reference global model, with an accurate examination of the implication of different regularization constraints (Chapter 3). Group velocity maps will then be shown and discussed. Subsequently we will invert the group velocity for the Vs structure of upper mantle (Chapter 4). Our resulting 3-D radially anisotropic model will be discussed in detail and compared with other published global and regional models.en
dc.description.sponsorshipUniversita' di Bolognaen
dc.language.isoEnglishen
dc.subjecttomographyen
dc.subjectsurface wavesen
dc.subjectinverse problemen
dc.titleSurface wave tomography in the European and Mediterranean regionen
dc.typethesisen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.identifier.URLhttp://amsdottorato.cib.unibo.it/359/en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropyen
dc.relation.referencesAkaike, H., 1974. A new look at the statistical model identification, IEEE Trans. Autom. Contr., 6, 716 - 723. Aki, K. and P.G. Richards, 2002. Quantitative seismology, Second Edition. University Science Books, Sausalito, California, USA Bassin, C., Laske, G. and G. Masters, 2000. The Current Limits of Resolution for Surface Wave Tomography in North America, EOS Trans AGU, 81, F897. Boschi, L. and G. Ekstr¨om, 2002. New images of the Earth’s upper mantle from measurements of surface wave phase velocity anomalies, J. geophys. Res., 107, doi:10.129/2000JB000059. Boschi, L., Ekstr¨om G. and B. Kustowski, 2004. Multiple resolution surface wave to- mography: the Mediterranean basin, Geophys. J. Int, 157, 293 - 304. Dziewonski, A. M., and D. L. Anderson, 1981. Preliminary reference Earth model, Phys. Earth Planet. Inter., 25, 297 - 356. Dziewonski, A., Bloch, S. and M. Landisman, 1969. A technique for the analysis of transient seismic signals, Bul l. Seismol. Soc. Am., 59, 427 - 444 Ekstr¨om, G. and A. M. Dziewonski, 1998. The unique anisotropy of the Pacific upper mantle, Nature, 394, 168 -172. Ekstr¨om, G., Tromp, J. and Larson, E.W.F., 1997. Measurements and global models of surface wave propagation, J. geophys. Res., 102, 8137 - 8157. Goldstein, P., Dodge, D., Firpo, M. and Lee Minner, 2003. SAC2000: Signal process- ing and analysis tools for seismologists and engineers, Invited contribution to ”The IASPEI International Handbook of Earthquake and Engineering Seismology”, Edited by WHK Lee, H. Kanamori, P.C. Jennings, and C. Kisslinger, Academic Press, Lon- don. Herrin, E. and T. Goforth, 1977. Phase Matched Filters: application to the study of Rayleigh waves, Bul l. Seismol. Soc. Am., 67, 1259 - 1275. Herrmann, R. B., 1973. Some aspects of band-pass filtering of surface waves, Bul l. Seis- mol. Soc. Am., 63, 663 - 671. Herrmann, R. B., 2005. Computer Programs in Seismology, Version 3.30, St. Louis University. Landisman, M., Dziewonski, A. and Y. Satˆo, 1969. Recent improvements in the Analysis of Surface wave Observations, Geophys. J. R. astr. Soc., 17, 369 - 403. Larson, E.W.F. and G. Ekstr¨om, 2001. Global Models of Surface Wave Group Velocity, Pure Appl. Geophys. 158(8), 1377 - 1400. Laske, G., Feb. 19, 2002. Instrumental Effects as seen by a Data Analyst, IGPP, Seis- mometry Seminar, at www.iris.edu/stations/seisWorkshop04/PDF/seismometry.pdf L´evˆeque, J.J., Rivera, L. and G. Wittlinger, 1993. On the use of the checkerboard test to assess the resolution of tomographic inversions, Geophys. J. Int, 115, 313 - 318. Levshin, A. L., T. B. Yanovskaya, A. V. Lander, B. G. Bukchin, M. P. Barmin, L. I. Ratnikova, and E. N. Its, 1989. Seismic surface waves in a laterally inhomogeneous Earth, edited by V. I. Keilis-Borok, Kluwer Publ., Dordrecht. Levshin, A. L., Ratnikova, L. and J. Berger, 1992. Peculiarities of surface-wave propa- gation across central Eurasia, Bul l. Seismol. Soc. Am., 82, 2464 - 2493. Love, A. E. H., 1927. A treatise on the mathematical theory of elasticity, 4th Edn., Cambridge Univ. Lucente, F.P., Chiarabba, C., Cimini, G.B. and D. Giardini, 1999. Tomographic con- straints on the geodynamic evolution of the Italian region, J. Geophys. Res. , 104, 20307 - 20327. Marone, F., Van der Lee, S. and D. Giardini, 2004. Three-dimensional upper mantle S-velocity model for the Eurasia-Africa plate boundary region, Geophys. J. Int., 158, 109 - 130. Marquering, H., and R. Snieder, 1996. Surface-wave velocity structure beneath Europe, the northeastern Atlantic and western Asia from waveform inversion including surface- wave mode coupling, Geophys. J. Int., 127, 283 - 304. Mele, G., A. Rovelli, D. Seber, T. M. Hearn, and M. Barazangi, 1998. Compressional velocity structure and anisotropy in the uppermost mantle beneath Italy and sur- rounding regions, J. Geophys. Res., 103, 12529 - 12543. Pasyanos, M.E. , 2005. A variable resolution surface wave dispersion study of Eurasia, North Africa and surrounding regions, J. geophys. Res., 110, doi:10.1029/2005JB003749. Piromallo, C. and A. Morelli, 2003. P wave tomography of the mantle under the Alpine- Mediterranean area, J. geophys. Res., 108, NO. B2, 2065, doi:10.1029/2002JB001757 Raykova R. and S. Nikolova, 2007. Tomography and velocity structure of the crust and uppermost mantle in southeastern Europe obtained from surface wave analysis, Stud. Geophys. Geod., 51, 165 - 184. Ritsema, J. and H. J.van Heijst, 2000. New seismic model of the upper mantle beneath Africa, Geology, 28, 63 - 66. Ritsema, J., van Heijst, H. J. and J. H. Woodhouse, 1999. Complex Shear Wave Velocity Structure Imaged Beneath Africa and Iceland, Science, 286, 1925 - 1928. Ritzwoller, M.H. and A. L. Levshin, 1998. Eurasian surface wave tomography: Group velocities, J. Geophys. Res. , 103, N. B3, 4839 - 4878. Sebai, A., Stutzmann, E., Montagner, J-P., Sicilia, D. and E. Beucler, 2006. Anisotropic structure of the African upper mantle from Rayleigh and Love wave tomography, Phys. Earth Planet. Inter., 155, 48 - 62. Shapiro, N.M. and M. H. Ritzwoller, 2002. Monte-Carlo inversion for a global shear velocity model of the crust and upper mantle, Geophys. J. Int 151, 88 - 105. Silveira,G., Stutzmann, E., Griot, D.A., Montagner, J.P. and L.M. Victor, 1998. Anisotropic tomography of the Atlantic Ocean from Rayleigh surface waves, Phys. Earth Planet. Inter., 106, 257 - 273. Silveira,G. and E. Stutzmann, 2002. Anisotropic tomography of the Atlantic Ocean, Phys. Earth Planet. Inter., 132, 237 - 248. Spakman, W., Van der Lee, S. and R.D. Van der Hilst, 1993. Travel-time tomography of the European-Mediterranean mantle down to 1400 km, Phys. Earth Planet. Inter., 79, 3 - 74 Takeuchi, M., and M. Saito, 1972. Seismic surface waves, in Seismology: Surface Waves and Free Oscil lations; Methods in Computational Physics, volume 11, edited by B. A. Bolt, pages 217 - 295, Academic Press, New York. Tarantola, A., 2005. Inverse Problem Theory and Model Parameter Estimation, SIAM, Philadelphia Tarantola, A., and B. Valette, 1982. Generalised nonlinear inverse problems solved using the least square criterion, Rev. Geophys., 20, 219 - 232 Trampert, J. and R. D. Van der Hilst, 2005. Towards a quantitative interpretation of Global Seismic Tomography, in: Earth’s Deep Mantle: Structure, Composition and Evolution. Geophysical Monograph Series, 160, AGU. Trampert, J. and J.H. Woodhouse, 1995. Global phase velocity maps of Love and Rayleigh waves between 40 and 150 s period, Geophys. J. Int. , 122, 675 - 690. Trampert, J. and J.H. Woodhouse, 2003. Global anisotropic phase velocity maps for fundamental mode surface waves between 40 and 150 s, Geophys. J. Int., 154, 154 - 165. Van der Lee, S. and G. Nolet, 1997. Upper mantle S-velocity structure of North America, J. geophys. Res., 102, 22815 - 22838. Villase˜ nor, A., Ritzwoller, M.H., Levshin, A.L., Barmin, M.P., Engdahl, E.R., Spakman, W., and J. Trampert, 2001. Shear velocity structure of central Eurasia from inversion of surface wave velocities, Phys. Earth Planet. Inter., 123, 169 - 184. Wessel, P., and W. H. F. Smith, 1995. New version of the Generic Mapping Tools released, Eos Trans. AGU, 76, 329 Yang, Y., Ritzwoller, M. H., Levshin A. L. and N. M. Shapiro, 2006. Ambient noise Rayleigh wave tomography across Europe, Geophys. J. Int., 168, 259 - 274. Zhou, Y., Dahlen, F. A., Nolet, G. and G. Laske, 2005. Finite-frequency effects in global surface-wave tomography, Geophys. J. Int., 163, 1087 - 1111. Zhou, Y., Nolet, G., Dahlen, F. A., and G. Laske, 2006. Global upper mantle struc- ture from finite-frequency surface-wave tomography, J. geophys. Res., 111, B04304, doi:10.1029/2005JB003677.en
dc.type.methodoriginal research thesisen
dc.description.obiettivoSpecifico3.3. Geodinamica e struttura dell'interno della Terraen
dc.description.fulltextopenen
dc.contributor.authorSchivardi, R.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
item.openairetypethesis-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Theses
Files in This Item:
File Description SizeFormat
SURFWAVE4.pdfthesis18.14 MBAdobe PDFView/Open
Show simple item record

Page view(s)

105
checked on Apr 24, 2024

Download(s) 20

434
checked on Apr 24, 2024

Google ScholarTM

Check