Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4846
DC FieldValueLanguage
dc.contributor.authorallSatriano, C.; RISSC-Lab, AMRA scarlen
dc.contributor.authorallLomax, A.; ALomax Scientificen
dc.contributor.authorallZollo, A.; Dipartimento di Scienze Fisiche Università di Napoli Federico IIen
dc.date.accessioned2008-12-16T10:11:17Zen
dc.date.available2008-12-16T10:11:17Zen
dc.date.issued2008-06en
dc.identifier.urihttp://hdl.handle.net/2122/4846en
dc.description.abstractAn effective early-warning system must provide probabilistic estimates of the location and size of a potentially destructive earthquake within a few seconds after the event is first detected. In this work we present an evolutionary, real-time location technique based on an equal differential time (EDT) formulation and a probabilistic approach for describing the hypocenter estimation. The algorithm, at each timestep, relies on the information from triggered arrivals and not-yet-triggered stations. With just one recorded arrival, the hypocentral location is constrained by the Voronoi cell around the first triggering station constructed using the travel times to the not-yet-triggered stations.With two or more triggered arrivals, the location is constrained by the intersection of the volume defined by the Voronoi cells for the remaining, not-yet-triggered stations and the EDT surfaces between all pairs of triggered arrivals. As time passes and more triggers become available, the evolutionary location converges to a standard EDT location. Synthetic tests performed using the geometry of the Irpinia seismic network, southern Italy (ISNet), and the simulation of an evolutionary location for the 2000 Mw 6:6 Western Tottori, Japan, earthquake indicate that when a dense seismic network is available, reliable location estimates suitable for early-warning applications can be achieved after 1–3 sec from the first event detection. A further simulation with an Mw 6:7 southern Greece earthquake shows that at a regional scale, the real-time location can provide useful constraints on the earthquake position several seconds before a non-real-time algorithm. Finally, we show that the robustness of the algorithm in the presence of outliers can be effectively used to associate phase arrivals coming from events occurring close in time, and we present a preliminary algorithm for event detection.en
dc.language.isoEnglishen
dc.publisher.nameSeismological Society of Americaen
dc.relation.ispartofBulletin of the Seismological Society of Americaen
dc.relation.ispartofseries/98(2008)en
dc.subjectEarly warningen
dc.subjectearthquake locationen
dc.titleReal-time evolutionary earthquake location for seismic early warningen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1482–1494en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolutionen
dc.identifier.doi10.1785/0120060159en
dc.relation.referencesAllen, R. (1982). Automatic phase pickers: their present use and future prospects, Bull. Seismol. Soc. Am. 72, S225–S242. Allen, R. M., and H. Kanamori (2003). The potential for earthquake early warning in southern California, Science 300, 786–789. Amato, A., R. Azzara, C. Chiarabba, G. B. Cimini, M. Cocco, M. Di Bona, L. Margheriti, S. Mazza, F. Mele, G. Selvaggi, A. Basili, E. Boschi, F. Courboulex, A. Deschamps, S. Gaffet, G. Bittarelli, L. Chiaraluce, D. Piccinini, and M. Ripepe (1998). The 1997 Umbria-Marche, Italy, earthquake sequence: a first look at the main shocks and aftershocks, Geophys. Res. Lett. 25, no. 15, 2861–2864. Bernard, P., and A. Zollo (1989). The Irpinia (Italy) 1980 earthquake: detailed analysis of a complex normal faulting, J. Geophys. Res. 94, no. B2, 1631–1647. Briole, P., G. De Natale, P. Gaulon, F. Pingue, and R. Scarpa (1986). Inversion of geodetic data and seismicity associated with the Friuli earthquake sequence (1976–1977), Ann. Geophys. 4, 481–492. Cichowicz, A. (1993). An automatic S-phase picker, Bull. Seismol. Soc. Am. 83, 180–189. Cua, G., and T. Heaton (2007). The virtual seismologist (VS) method: a Bayesian approach to earthquake early warning, in Earthquake Early Warning Systems, P. Gasparini, G. Manfredi and J. Zschau (Editors), Springer-Verlag, Berlin. Dietz, L. (2002). Notes on configuring BINDER_EW: Earthworm’s phase associator, http://folkworm.ceri.memphis.edu/ew‑doc/ovr/binder _setup.html (last accessed March 2008). Font, Y., H. Kao, S. Lallemand, C.-S. Liu, and L.-Y. Chiao (2004). Hypocentral determination offshore eastern Taiwan using the maximum intersection method, Geophys. J. Int. 158, 655–675. Fukuyama, E., W. L. Ellsworth, F. Waldhauser, and A. Kubo (2003). Detailed fault structure of the 2000 western Tottori, Japan, earthquake sequence, Bull. Seismol. Soc. Am. 93, 1468–1478. Heaton, T. H. (1985). A model for a seismic computerized alert network, Science 228, 987–990. Horiuchi, S., H. Negishi, K. Abe, A. Kamimura, and Y. Fujinawa (2005). An automatic processing system for broadcasting earthquake alarms, Bull. Seismol. Soc. Am. 95, 708–718. Husen, S., E. Kissling, N. Deichmann, S. Wiemer, D. Giardini, and M. Baer (2003). Probabilistic earthquake location in complex threedimensional velocity models: application to Switzerland, J. Geophys. Res. 108, no. B2, 2077, doi 10.1029/2002JB001778. Iervolino, I., V. Convertito, M. Giorgio, G. Manfredi, and A. Zollo (2006). Real-time risk analysis for hybrid earthquake early warning systems, J. Earthq. Eng. 10, no. 6, 867–885. Kanamori, H. (2005). Real-time seismology and earthquake damage mitigation, Ann. Rev. Earth Planet. Sci. 33, 195–214. Lee,W. H. K., and J. M. Espinosa-Aranda (2003). Earthquake early warning systems: current status and perspectives, in Early Warning Systems for Natural Disaster Reduction, J. Zscahu and A. N. Kuppers (Editors), Springer, Berlin, 409–423. Lomax, A. (2005). A reanalysis of the hypocentral location and related observations for the great 1906 California earthquake, Bull. Seismol. Soc. Am. 95, 861–877. Lomax, A., and A. Curtis (2001). Fast, probabilistic earthquake location in 3D models using Oct-tree importance sampling, Geopys. Res. Abstr. 3, 955. Lomax, A., J. Virieux, P. Volant, and C. Berge (2000). Probabilistic earthquake location in 3D and layered models: introduction of a Metropolis- Gibbs method and comparison with linear locations, in Advances in Seismic Event Location, C. H. Thurber and N. Rabinowitz (Editors), Kluwer, Amsterdam, 101–134. Magotra, N., N. Ahmed, and E. Chael (1987). Seismic event detection and source location using single station (three-component) data, Bull. Seismol. Soc. Am. 77, 958–971. Milne, J. (1886). Earthquakes and Other Earth Movements, Appelton, New York, 361 pp. Podvin, P., and I. Lecomte (1991). Finite difference computations of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools, Geophys. J. Int. 105, 271–284. Rydelek, P., and J. Pujol (2004). Real-time seismic warning with a 2-station subarray, Bull. Seismol. Soc. Am. 94, 1546–1550. Tarantola, A., and B. Vallette (1982). Inverse problems=quest for information, J. Geophys. 50, 159–170. Weber, E., V. Convertito, G. Iannaccone, A. Zollo, A. Bobbio, L. Cantore, M. Corciulo, M. Di Crosta, L. Elia, C. Martino, A. Romeo, and C. Satriano (2007). An advanced seismic network in the Southern Apennines (Italy) for seismicity investigations and experimentation with earthquake early warning, Seism. Res. Lett. 78, no. 6, 622–634, doi 10.1785/gssrl.78.6.622. Weisstein, E. W. (1999). Voronoi polygon, in MathWorld: A Wolfram Web Resource, http://mathworld.wolfram.com/VoronoiPolygon.html (last accessed March 2008). Withers, M., R. Aster, C. Young, J. Beiriger, M. Harris, S. Moore, and J. Trujillo (1998). A comparison of select trigger algorithms for automated global seismic phase and event detection, Bull. Seismol. Soc. Am. 88, 95–106. Zhou, H. (1994). Rapid 3-D hypocentral determination using a master station method, J. Geophys. Res. 99, 15,439–15,455. Zollo, A., M. Lancieri, and S. Nielsen (2006). Earthquake magnitude estimation from peak amplitudes of very early seismic signals on strong motion records, Geophys. Res. Lett. 33, L233112, doi 10.1029/ 2006GL027795.en
dc.description.obiettivoSpecifico4.1. Metodologie sismologiche per l'ingegneria sismicaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorSatriano, C.en
dc.contributor.authorLomax, A.en
dc.contributor.authorZollo, A.en
dc.contributor.departmentRISSC-Lab, AMRA scarlen
dc.contributor.departmentDipartimento di Scienze Fisiche Università di Napoli Federico IIen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversité de Paris-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0002-3039-2530-
crisitem.author.orcid0000-0002-7747-5990-
crisitem.author.orcid0000-0002-8191-9566-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
BSSA_Satr_Zollo.pdf854.63 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

79
checked on Feb 10, 2021

Page view(s) 50

193
checked on Mar 27, 2024

Download(s)

45
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric