Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4817
DC FieldValueLanguage
dc.contributor.authorallDe Matteis, R.; Dipartimento di Studi Geologici ed Ambientali, Università del Sannioen
dc.contributor.authorallVanorio, T.; Department of Geophysics, Stanford Universityen
dc.contributor.authorallZollo, A.; Dipartimento di Scienze Fisiche, Università di Napoli Federico IIen
dc.contributor.authorallCiuffi, S.; ENEL GEM-Geothermal Productionen
dc.contributor.authorallFiordelisi, A.; ENEL GEM-Geothermal Productionen
dc.contributor.authorallSpinelli, E.; ENEL GEM-Geothermal Productionen
dc.date.accessioned2008-12-15T21:42:47Zen
dc.date.available2008-12-15T21:42:47Zen
dc.date.issued2008-11en
dc.identifier.urihttp://hdl.handle.net/2122/4817en
dc.description.abstractIn a geothermal area, a detailed knowledge of the three-dimensional velocity structures aids the managementof the field and the further development of the geothermal source. Here,we present a high-resolution study of the three-dimensional S-wave velocity structures from microearthquake travel times for the Larderello-Travale geothermal field, Italy.We have also deduced the Vp/Vs and Vp ×Vs parameters for this area toemphasize the deep variations in the physical rock properties due to fluid content and porosity. Furthermore, effective porousmedium modelling has been performed for site-relevant lithologies, to improve our interpretation of the results in terms of rock physics signatures. This has allowed us to estimate the variation range of the seismological parameters investigated, as well as their sensitivity for suitable rock under specific physical conditions. LowVp/Vs anomalies, arising froma lower Vp compared to Vs, dominate the geothermal field of Larderello-Travale. These have been interpreted as due to steam-bearing formations. On the contrary, analysis of Vp ×Vs images provides information on the relative changes in rock porosity at depth. Comparison of tomographic section images with previously interpreted seismic lines suggests that the reflective ‘K-horizon’ delineates a transition between zones that have different porosities or crack gatherings. The ‘K-horizon’ also lies on low Vp/Vs anomalies, which suggests a steam saturation zone, despite the reduced porosity at this depth.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofPhysics of the Earth and Planetary Interiorsen
dc.subjectP- and S-wave velocityen
dc.subjectSeismic tomography imagesen
dc.subjectGeothermal fielden
dc.subjectRock propertiesen
dc.titleThree-dimensional tomography and rock properties of the Larderello-Travaleen
dc.typearticleen
dc.description.statusIn pressen
dc.type.QualityControlPeer-revieweden
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismologyen
dc.identifier.doi10.1016/j.pepi.2008.04.019en
dc.relation.referencesAbbate, E., Bortolotti, V., Passerini, P., Sagri, M., 1970. Introduction to the geology of the Northern Apennines in Development of the Northern Apennines geosyncline. Sedimen. Geol. 4, 207–642. Barelli, A., Bertini, G., Buonasorte, G., Cappetti, G., Fiordelisi, A., 2000. Recent deep exploration results at the margins of the Larderello-Travale geothermal system. In: Proceedings 2000World Geothermal Congress, Kyushu, Tohoku, Japan. Batini, F., Burgassi, P.D., Cameli, G.M., Nicolich, R., Squarci, P., 1978. Contribution to the study of the deep lithospheric profiles: deep reflecting horizons in Larderello-Travale Geothermal field. Mem. Soc. Geol. Ital. 19, 477– 484. Batini, F., Bertini, G., Giannelli, G., Pandeli, E., Puxeddu, M., Villa, I., 1985. Deep structure, age and evolution of the Larderello-Travale geothermal field. Geotherm. Res., Commun. Trans. 9, 253–259. Batini, F., Nicolich, R., 1985. P and S reflection seismic profiling and well logging in the Travale geothermal field. Geothermics 14, 731–747. Batzle, M., Wang, Z., 1992. Seismic properties of pore fluids. Geophysics 57, 1396–1408. Benz, H.M., Chouet, B.A., Dawson, P.B., Lahr, J.C., Page, R.A., Hole, J.A., 1996. Threedimensional P and S wave velocity structure of Redoubt Volcano, Alaska. J. Geophys. Res. 101, 8111–8128. Birch, F., 1960. The velocity of compressional waves in rocks to 10 kilobars Part I. J. Geophys. Res. 65, 1083–1102. Brogi, A., Lazzarotto, A., Liotta, D., Ranalli, G., 2003. Extensional shear zones as imaged by reflection seismic lines: the Larderello geothermal field (central Italy). Tectonophysics 363 (1/2), 127–139. Cameli, G., Ceccarelli, A., Dini, I., Mazzotti, A., 2000. Contribution of the seismic reflection method to the location of Deep fractured levels in the geothermal fields of southern Tuscany (central Italy). In: Proceedings 2000World Geothermal Congress, Kyushu, Tohoku, Japan. Cappetti, G., Passaleva, G., Sabatelli, F., 2000. Italy country update report 1995–1999. In: Proceedings 2000World Geothermal Congress, Kyushu, Tohoku, Japan. Cappetti, G., Ceppatelli, L., 2005. Geothermal power generation in Italy: 2000–2004 update report. In: Proceedings 2005 World Geothermal Congress, Antalia, Turkey. Cappetti, G., Fiordelisi, A., Casini, M., Ciuffi, S., Mazzotti, A., 2005. A new deep exploration program and preliminary results of a 3D seismic survey in the Larderello-Travale Geothermal field (Italy). In: Proceedings 2005World Geothermal Congress, Antalia, Turkey. Chatterjee, S.N., Pitt, A.M., Iyer, H.M., 1985. Vp/Vs ratios in the Yellowstone National Park region, Wyoming. J. Volc. Geoth. Res. 26 (3/4), 213–230. Christensen, N.I., 1985. Measurements of dynamic properties of rocks at elevated temperatures and pressures. In: Pincus, H.J., Hoskins, E.R. (Eds.), Measurements of Rock Properties at Elevated Pressures and Temperatures. Spec. Tech. Publ.—ASTM, 869, 93–107.Christensen, N.I., Mooney, W.D., 1995. Seismic velocity structure and composition of the continental crust: a global view. J. Geophys. Res. 100 (B6), 9761–9788. Dvorkin, J., Prasad, M., Sakai, A., Lavoie, D., 1999. Elasticity of marine sediments: rock physics modeling. Geophys. Res. Lett. 26 (12), 1781–1784. Ito, H., DeVilbiss, J., Nur, A., 1979. Compressional and shear waves in saturated rock during water-steam transition. J. Geophys. Res. 84, 4731–4735. Iverson, W.P., Fahmy, B.A., Smithson, S.B., 1989. VpVs from mode-converted P–S reflections. Geophysics 54, 843–852. Mavko, G., Mukerjy, T., Dvorkin, J., 1998. Rock Physics Handbook. Cambridge University Press. Mindlin, R.D., 1949. Compliance of elastic bodies in contact. Trans. ASME 71, A-259. Minissale, A., Aug 1991. The Larderello Geothermal Field: a review 1991. Earth-Sci. Rev. 31 (2), 133–151. Monna, S., Filippi, L., Beranzoli, L., Favali, P., 2003. Rock properties of the uppercrust in Central Apennines (Italy) derived fromhigh-resolution 3D tomography. Geophys. Res. Lett. 30, 7, doi:10.1029/2002GL016780. Murase, T.,McBirney, A.R., 1973. Properties of some common igneous rocks and their melts at high temperature. Bull. Geol. Soc. Am. 84, 3563–3592. Nur, A., Mavko, G., Dvorkin, J., Galmudi, D., 1998. Critical porosity: a key to relating physical properties to porosity in rocks. The Leading Edge 17 (3), 357–362. Nur, A., Wang, Z. (Eds.), 1989. Seismic and Acoustic Velocities in Reservoir Rocks: Experimental Studies, vol. 1. Society of Exploration Geophysicists, Tulsa, p. 405. O’Connell, R.J., Budiansky, B., 1974. Seismic velocities in dry and saturated cracked solids. J. Geophys. Res. 79, 5412–5426. Okubo, P.G., Benz, H.M., Chouet, B.A., 1997. Imaging the crustal magma sources beneath Mauna Loa and Kilauea volcanoes, Hawaii. Geology 25 (10), 867– 870. Paige, C.C., Saunders, M.A., 1982. LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Software 8, 43–71. Podvin, P., Lecomte, I., 1991. Finite difference computation of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools. Geophys. J. Int. 105, 271–284. Prasad, M., 2002. Acoustic measurements in sands at low effective pressure: overpressure detection in sands. Geophysics 67 (2), 405–412. Puxeddu, M., 1984. Structure and late Cenozoic evolution of the upper lithosphere in Southwest Tuscany (Italy). Tectonophysics 101 (3/4), 357–382. Raffaele, R., Langer, H., Gresta, S., Moia, F., 2006. Tomographic inversion of local earthquake data fromthe Gioia Tauro basin (south-western Calabria, Italy). Geophys. J. Int. 165, 167–179, doi:10.1111/j.1365-246X.2006.02872.x. Sanders, C.O., Ponko, S.C., Nixon, L.D., Schwartz, E.A., 1995. Seismological evidence for magmatic and hydrothermal structure in Long Valley caldera from local earthquake attenuation and velocity tomography. J. Geophys. Res. 100, 8311– 8326. Spencer Jr., J.W.,Nur, A.M., 1976. The effects of pressure, temperature, and porewater on velocities inWesterly Granite. J. Geophys. Res. 81 (5), 899–904. Tatham, R.H., 1982. Vp/Vs and Lithology. In: Proceedings of the 50th Annual International Meeting, R35, Society of Exploration Geophysicists, pp. 2401–2414, Reprints. Toks ¨ oz, M.N., Cheng, C.H., Timur,A., 1976. Velocities of seismicwaves in porous rocks. Geophysics 41, 621–645. Vanorio, T., De Matteis, R., Zollo, A., Batini, F., Fiordelisi, A., Ciulli, B., 2004. The deep structure of the Larderello-Travale geothermal field from 3D microearthquake traveltime tomography. Geophys. Res. Lett. 32, doi:10.1029/2004GL019432. Villasenor, A., Benz, H.M., Filippi, L., De Luca, G., Scarpa, R., Patane, G., Vinciguerra, S., 1998. Three-dimensional P wave velocity structure of Mt. Etna, Italy. Geophys. Res. Lett. 25 (11), 1975–1978. Wang, Z., Nur, A. (Eds.), 1992. Seismic and Acoustic Velocities in Reservoir Rocks: Theoretical and Model Studies, vol. 2. Society of Exploration Geophysicists, Tulsa, p. 457. Zollo, A., Judenherc, S., Auger, E., D’Auria, L., Virieux, J., Capuano, P., Chiarabba, C., de Franco, R., Makris, J., Michelini, A., Musacchio, G., 2003. Evidence for the buried rim of Campi Flegrei caldera from3D active seismic imaging. Geophys. Res. Lett. 30, 19, doi:10.1029/2003GL018173.en
dc.description.obiettivoSpecifico1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attiveen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorDe Matteis, R.en
dc.contributor.authorVanorio, T.en
dc.contributor.authorZollo, A.en
dc.contributor.authorCiuffi, S.en
dc.contributor.authorFiordelisi, A.en
dc.contributor.authorSpinelli, E.en
dc.contributor.departmentDipartimento di Studi Geologici ed Ambientali, Università del Sannioen
dc.contributor.departmentDepartment of Geophysics, Stanford Universityen
dc.contributor.departmentDipartimento di Scienze Fisiche, Università di Napoli Federico IIen
dc.contributor.departmentENEL GEM-Geothermal Productionen
dc.contributor.departmentENEL GEM-Geothermal Productionen
dc.contributor.departmentENEL GEM-Geothermal Productionen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptGeDipartimento di Studi ologici e Ambientali, Università degli Studi del Sannio, Benevento,Italy-
crisitem.author.deptStanford Rock Physics Laboratory, Stanford University, Stanford, CA, USA-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptEnel, Pisa-
crisitem.author.deptEnel, Pisa-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0003-2821-0539-
crisitem.author.orcid0000-0002-8191-9566-
crisitem.author.orcid0000-0003-0743-9908-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Pepi_DeMatteis_2008.pdf3 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

18
checked on Feb 10, 2021

Page view(s) 50

216
checked on Mar 27, 2024

Download(s) 20

286
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric