Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorallCorciulo, M.; Dipartimento di Scienze Fisiche, Università di Napoli Federico IIen
dc.contributor.authorallZollo, A.; Dipartimento di Scienze Fisiche, Università di Napoli Federico IIen
dc.contributor.authorallVassallo, M.; Dipartimento di Scienze Fisiche, Università di Napoli Federico IIen
dc.contributor.authorallDell'Aversana, P.; Eni E&Pen
dc.contributor.authorallMorandi, S.; Shell International Exploration and Productionen
dc.description.abstractIn order to retrieve a 2D background velocity model and to retrieve the geometry and depth of shallow crustal reflectors in the Southern Apennines thrust belt a separate inversion of first arrival traveltimes and reflected waveforms was performed. Data were collected during an active seismic experiment in 1999 by Enterprise Oil Italiana and Eni-Agip using a global offset acquisition geometry. A total of 284 on-land shots were recorded by 201 receivers deployed on an 18 km line oriented SW–NE in the Val D’Agri region (Southern Apennines, Italy). The two-step procedure allows for the retrieval of a reliable velocity model by using a non-linear tomographic inversion and reflected waveform semblance data inversion. The tomographic model shows that the P wave velocity field varies vertically from approximately 3 km/s to 6 km/s within 4 km from the Earth’s surface. Moreover, at a distance of approximately 11 km along the profile, there is an abrupt increase in the velocity field. In this zone indeed, an ascent from 2 km depth to 0 km above sea level of the 5.2 km/s iso-velocity contour can be noted. The retrieved velocity can be associated with Plio-Pleistocene clastic deposits outcropping in the basin zone and with Mesozoic limestone deposits. The inversion of waveform semblance data shows that a P-to-P reflector is retrieved at a depth of approximately 2 km. This interface is deeper in the north-eastern part of the profile, where it reaches 3 km depth and can be associated with a limestone horizon.en
dc.publisher.nameBlackwell publishingen
dc.relation.ispartofGeophysical Prospectingen
dc.subjectSouthern Apenninesen
dc.subjectnon-linear inversionen
dc.titleDepth and morphology of reflectors from the non-linear inversion of arrival times and waveforms semblance data. Part II: Modelling and interpretation of real data acquired in Southern Apennines, Italyen
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methodsen
dc.relation.referencesAkaike H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 6, 716–723. Boschetti F., Dentith M.C. and List R.D. 1996. Inversion of seismic refraction data using genetic algorithm. Geophysics 61, 1715– 1727. Bunks C., Salick F.M., Zaleski S. and Chavent G. 1995. Multi-scale seismic waveform inversion. Geophysics 60, 1457–1473. Casero P., Roure F. and Vially R. 1991. Tectonic framework and petroleum potential of the southern Apennines. In: Generation, Accumulation and Production of Europe’s Hydrocarbons, Vol. I (ed. A.M. Spencer), pp. 381–387. European Association of Petroleum Geoscientists. Cavanaugh J.E. 1997. Unifying the derivation for the Akaike and corrected Akaike Information Criteria. Statistics&Probability Letters 33, 201–208. Dell’Aversana P., Morandi S., Buia M. and Colombo D. 2002. Prestack depth migration of ‘Global Offset’ data integrated with high resolution magnetotelluric and gravity. 72nd SEG meeting, Salt Lake City, Utah, USA. Dell’Aversana P., Colombo D., Buia M. and Morandi S. 2003. Velocity interface model building in a thrust belt by tomographic inversion of global offset seismic data. Geophysical Prospecting 51, 23– 35. Goldberg D. 1989. Genetic Algorithm in Search, Optimization and Machine Learning. Addison-Wesley Professional. Hurvich C.M. and Tsai C. 1989. Regression and time series model selection in small samples. Biometrika 76, 297–307. Improta L., Zollo A., Herrero A., Frattini R., Virieux J. and Dell’Aversana P. 2002. Seismic imaging of complex structures by non-linear traveltime inversion of dense wide-angle data: Application to a thrust belt. Geophysical Journal International 151, 264– 278. Jin S. and BeydounW. 2000. 2D multi-scale non-linear velocity inversion. Geophysical Prospecting 48, 163–180. doi:10.1046/j.1365- 2478.2000.00177.x Julian B.R. and Gubbins D. 1977. Three-dimensional seismic ray tracing. Journal of Geophysics 43, 95–114. Lutter W.J. and Nowack R.L. 1990. Inversion of crustal structure using reflections from PASSCAL Ouachita Experiment. Journal of Geophysical Research 95, 4633–4646. Mazzotti A.P., Stucchi E., Fradelizio G.L., Zanzi L. and Scandone P. 2000. Seismic exploration in complex terrains: A processing experience in the Southern Apennines. Geophysics 65, 1402–1417. Menardi Noguera A. and Rea G. 2000. Deep structure of the Campania-Lucanian arc (Southern Apennines). Tectonophysics 324, 239–265. Mostardini F. and Merlini S. 1986. Appennino centro-meridionale: Sezioni geologiche e proposta di modello strutturale. Memorie Societ `a Geologica Italiana 35, 177–202. Neidell N.S. and Taner M.S. 1971. Semblance and other coherency measurements for multichannel data. Geophysics 36, 482–497. Povin P. and Lecomte I. 1991. Finite difference computation of traveltimes in very contrasted velocity models: A massively parallel approach and its associated tools. Geophysical Journal International 105, 271–284. Sambridge M. and Drijkoningen G. 1992. Genetic algorithms in seismic waveform inversion. Geophysical Journal International 109, 323–342. Shiner P., Beccaccini A. and Mazzoli S. 2004. Thin-skinned versus thick-skinned structural models for Apulian carbonate reservoirs: Constraints from the Val d’Agri Fields, S. Apennines, Italy. Marine and Petroleum Geology 21, 805–827. Vassallo M. and Zollo A. 2008. Depth and Morphology of reflectors from the non-linear inversion of arrival time and waveform semblance data. Part I: Method and applications to synthetic data. Geophysical Prospecting 56, this issue. Wessel P. and SmithW.H.F. 1991. Free software helps map and display data. Eos Transactions, American Geophysical Union 72, 445–446. Whitley D. 1994. A Genetic Algorithm Tutorial. Samizdat Press (˙tutorial). Zollo A., D’Auria L., De Matteis R., Herrero A., Virieux J. and Gasparini P. 2002. Bayesian estimation of 2-D P-velocity models from active seismic arrival time data: Imaging of the shallow structure of Mt Vesuvius (Southern Italy). Geophysical Journal International 151, 566–582.en
dc.description.obiettivoSpecifico3.8. Geofisica per l'ambienteen
dc.description.journalTypeJCR Journalen
dc.contributor.authorCorciulo, M.en
dc.contributor.authorZollo, A.en
dc.contributor.authorVassallo, M.en
dc.contributor.authorDell'Aversana, P.en
dc.contributor.authorMorandi, S.en
dc.contributor.departmentDipartimento di Scienze Fisiche, Università di Napoli Federico IIen
dc.contributor.departmentDipartimento di Scienze Fisiche, Università di Napoli Federico IIen
dc.contributor.departmentDipartimento di Scienze Fisiche, Università di Napoli Federico IIen
dc.contributor.departmentEni E&Pen
dc.contributor.departmentShell International Exploration and Productionen
item.fulltextWith Fulltext-
crisitem.classification.parent04. Solid Earth-à di Napoli Federico II - Dipartimento Scienze Fisiche- Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia- Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia- S.p.A., San Donato Milanese, Milano, Italy- International Exploration and Production- Nazionale di Geofisica e Vulcanologia- Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Corciulo_GP.pdf1.12 MBAdobe PDF
Show simple item record

Page view(s) 50

checked on Jun 15, 2024


checked on Jun 15, 2024

Google ScholarTM