Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4804
DC FieldValueLanguage
dc.contributor.authorallLancieri, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallZollo, A.; Dipartimento di Scienze Fisiche, Universita` di Napoli Federico IIen
dc.date.accessioned2008-12-15T16:06:10Zen
dc.date.available2008-12-15T16:06:10Zen
dc.date.issued2008-12-03en
dc.identifier.urihttp://hdl.handle.net/2122/4804en
dc.description.abstractIt has been shown that the initial portion of P and S wave signals can provide information about the final earthquake magnitude in a wide magnitude range. This observation opens the perspective for the real-time determination of source parameters. In this paper we describe a probabilistic evolutionary approach for the real-time magnitude estimation which can have a potential use in earthquake early warning. The technique is based on empirical prediction laws correlating the low-frequency peak ground displacement measured in a few seconds after the P and/or S phase arrival and the final event magnitude. The evidence for such a correlation has been found through the analysis of 256 shallow crustal events in the magnitude range Mjma 4–7.1 located over the entire Japanese archipelago. The peak displacement measured in a 2-s window from the first P phase arrival correlates with magnitude in the range M = [4–6.5]. While a possible saturation effect above M ’ 6.5 is observed, it is less evident in an enlarged window of 4 s. The scaling of S peaks with magnitude is instead also observed at smaller time lapses (i.e., 1 s) after the first S arrival. The different scaling of P and S peaks with magnitude when measured in a 2-s window is explained in terms of different imaged rupture surface by the early portion of the body wave signals. We developed a technique to estimate the probability density function (PDF) of magnitude, at each time step after the event origin. The predicted magnitude value corresponds to the maximum of PDF, while its uncertainty is given by the 95% confidence bound. The method has been applied to the 2007 (Mjma = 6.9) Noto Hanto and 1995 (Mjma = 7.3) Kobe earthquakes. The results of this study can be summarized as follows: (1) The probabilistic algorithm founded on the predictive model of peak displacement versus final magnitude is able to provide a fast and robust estimation of the final magnitude. (2) The information available after a few seconds from the first detection of the P phase at the network can be used to predict the peak ground motion at a given regional target with uncertainties which are comparable to those derived from the attenuation law. (3) The near-source S phase data can be used jointly with P data for regional early warning purposes, thus increasing the accuracy and reliability of magnitude estimation.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseries/113(2008)en
dc.subjectBayesian approachen
dc.subjectP and S waveen
dc.titleA bayesian approach to the real time estimation of magnitude from the early P- and S-wave displacement peaksen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB12302en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolutionen
dc.identifier.doi10.1029/2007JB005386en
dc.relation.referencesABS Consulting (2007), Flash report on the Noto Hanto earthquake, technical report, Houston, Tex. Aki, K., and P. G. Richards (1980), Quantitative Seismology: Theory and Methods, W. H. Freeman, San Francisco, Calif. Allen, R. (2007), The ElarmS earthquake early warning methodology and application across California, in Earthquake Early Warning System, edited by P. Gasparini, G. Manfredi, and J. Zhao, pp. 21 – 43, Springer, Heidelberg, Germany. Allen, R. M., and H. Kanamori (2003), The potential for earthquake early warning in southern California, Science, 300, 786– 789. Allen, R. V. (1978), Tiltmeter observations near a large earthquake, Bull. Sesimol. Soc. Am., 68(3), 855–857. Bernard, P., and R. Madariaga (1984), A new asymptotic method for the modeling of near-field accelerograms, Bull. Seismol. Soc. Am., 74(2), 539– 557. Campbell, K. W. (1985), Strong motion attenuation relations: A ten-year perspective, Earthquake Spectra, 1, 759– 804. City of Kobe Office (2008), The great Hanshin-Awaji earthquake statistics and restoration progress, technical report, Kobe, Japan. Cua, G., and T. Heaton (2007), The Virtual Seismologist (VS) method: A Bayesian approach to earthquake early warning, in Earthquake Early Warning System, edited by P. Gasparini, G. Manfredi, and J. Zschau, pp. 97– 132, Springer, Heidelberg, Germany. Dziewonski, A. M., T. A. Chou, and J. H. Woodhouse (1981), Determination of earthquake source parameters from waveform data for studies of global and regional seismicity, J. Geophys. Res., 86, 2825–2852. Festa, G. (2007), Does the slip in the early steps of the rupture scale with the final magnitude of the event?, Eos Trans. AGU, 88(52), Fall Meet. Suppl., Abstract S24B-04. Font, Y., H. Kao, S. Lallemand, C.-S. Liu, and L.-Y. Chiao (2004), Hypocentre determination offshore of eastern Taiwan using the maximum intersection method, Geophys. J. Int., 158(2), 655 – 675, doi:10.1111/ j.1365-246X.2004.02317.x. Fukuyama, E., W. L. Ellsworth, F. Waldhauser, and A. Kubo (2003), Detailed fault structure of the 2000 western Tottori, Japan, earthquake sequence, Bull. Seismol. Soc. Am., 93(4), 1468– 1478. Goltz, J. D. (2002), Introducing earthquake early warning in california: A summary of social science and public policy issues, technical report, Governor’s Off. of Emergency Serv., Pasadena, Calif. Hellemans, A. (2006), Do early tremors give sneak preview of quake’s power?, Scienze, 314, 1670, doi:10.1126/science.314.5806.1670. Hokuriku Electric Power Company (2006), Annual report, technical report, Toyama City, Japan. Horiuchi, S., H. Negishi, K. Abe, A. Kamimura, and Y. Fujinawa (2005), An automatic processing system for broadcasting earthquake alarms, Bull. Seismol. Soc. Am., 95(2), 708– 718. Hoshiba, M., O. Kamigaichi, M. Saito, S. Tsukada, and N. Hamada (2008), Earthquake early warning starts nationwide in Japan, Eos Trans. AGU, 89(8), 73. Ide, S., M. Takeo, and Y. Yoshida (1996), Source process of the 1995 Kobe earthquake: Determination of spatio-temporal slip distribution by Bayesian modeling, Bull. Seismol. Soc. Am., 86, 547– 566. Iervolino, I., V. Convertito, M. Giorgio, G. Manfredi, and A. Zollo (2006), Real-time risk analysis in hybrid earthquake early warning systems, J. Earthquake Eng., 10, 867– 885. Iervolino, I., M. Giorgio, and G. Manfredi (2007), Expected loss-based alarm threshold set for earthquake early warning systems, Earthquake Eng. Struct. Dyn., 36, 1151– 1168, doi:10.1002/eqe.675. Kamigaichi, O. (2004), JMA earthquake early warning, J. Jpn. Assoc. Earthquake Eng., 3, 134– 137. Kanamori, H. (2005), Real-time seismology and earthquake damage mitigation, Annu. Rev. Earth Planet. Sci., 33, 195– 214. Kanno, T., A. Narita, N. Morikawa, H. Fujiwara, and Y. Fukushima (2006), A new attenuation relation for strong ground motion in Japan based on recorded data, Bull. Seismol. Soc. Am., 96(3), 879– 897. Katsumata, A. (1996), Comparison of magnitudes estimated by the Japan Meteorological Agency with moment magnitudes for intermediate and deep earthquakes, Bull. Seismol. Soc. Am., 86(3), 832–842. Keilis-Borok, V. (1959), On estimation of the displacement in an earthquake source and of source dimensions, Ann. Geofis., 12, 205– 214. Kostrov, B. V. (1964), Selfsimilar problems of propagation of shear cracks, Appl. Math. Mech., 28(5), 1077– 1087. Midorikawa, S., K. Fujimoto, and I. Muramatsu (1999), Correlation of new JMA instrumental seismic intensity with former JMA seismic intensity and ground motion parameters, J. Inst. Soc. Safety Sci., 1, 51–56. Murphy, S., and S. Nielsen (2008), Dynamic and kinematic investigation of earthquake magnitude determination by first few seconds of waveforms, Bull. Seismol. Soc. Am., in press. Nakamura, Y. (1988), On the urgent earthquake detection and alarm system (Uredas), in Proceedings of the 9th World Conference on Earthquake Engineering, vol. VII, pp. 673–678, Univ. do Porto, Fac. de Eng., Porto, Portugal. Odaka, T., K. Ashiya, S. Tsukada, S. Sato, K. Ohtake, and D. Nozaka (2003), A new method of quickly estimating epicentral distance and magnitude from a single seismic record, Bull. Seismol. Soc. Am., 93(1), 526– 532. Olson, E. L., and R. M. Allen (2005), The deterministic nature of earthquake rupture, Nature, 438–10, 212– 215. Rydelek, P., and S. Horiuchi (2006), Is the earthquake rupture deterministic?, Nature, 442–20, E5–E6. Rydelek, P., C. Wu, and S. Horiuchi (2007), Comment on ‘‘Earthquake magnitude estimation from peak amplitudes of very early seismic signals on stron motion records’’ by Aldo Zollo, Maria Lancieri, and Stefan Nielsen, Geophys. Res. Lett., 34, L20302, doi:10.1029/2007GL029387. Satriano, C., A. Lomax, and A. Zollo (2008), Real-time evolutionary earthquake location for seismic early warning, Bull. Seismol. Soc. Am., 98(3), 1482–1494, doi:10.1785/0120060159. Scholz, C. H. (1990), The Mechanics of Earthquakes and Faulting, Cambridge Univ. Press, New York. Sekiguchi, H., K. Irikura, T. Iwata, Y. Kakehi, and M. Hoshiba (1996), Minute locating of faulting beneath Kobe and the waveform inversion of the process during the 1995 Hyogo-Ken Nambu, Japan earthquake using strong ground motion records, J. Phys. Earthquake, 44, 473–487. Sekiguchi, H., K. Irikura, and T. Iwata (2000), Fault geometry at the rupture termination of the 1995 Hyogo-Ken Nanbu earthquake, Bull. Seismol. Soc. Am., 90(1), 133– 177. Shresta, B. K. (2001), Disaster reduction and response preparedness in Japan: A Hyogo approach, paper presented at CDC 2001: The Second Tampere Conference on Disaster Communication, Motorola, Tampere, Finland. Spudich, P., and L. N. Frazer (1984), Use of ray theory to calculate highfrequency radiation from earthquake sources having spatially variable rupture velocity and stress drop, Bull. Seismol. Soc. Am., 74, 2061–2082. Tsuboi, C. (1954), Determination of the Gutenberg-Richter’ s magnitude of earthquakes occurring in and near Japan (in Japanese with English abstract), J. Seismol. Soc. Jpn., 7, 185– 193. Tsukada, S. (2006), Earthquake early warning system in Japan, paper presented at 6th Joint Meeting of UJNR Panel on Earthquake Research, Coop. Program in Nat. Resour., Tokushima, Japan. Wald, D. J. (1996), Slip history of the 1995 Kobe, Japan, earthquake determined from strong motion, teleseismc, and geodetic data, J. Phys. Earth, 44, 489– 503. Wells, D., and K. Coppersmith (1994), New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, Bull. Seismol. Soc. Am., 84(4), 974–1002. Wu, Y. M., and H. Kanamori (2005a), Rapid assessment of damage potential of earthquakes in Taiwan from the beginning of P waves, Bull. Seismol. Soc. Am., 95(3), 1181– 1185. Wu, Y. M., and H. Kanamori (2005b), Experiment on an onsite early warning method for the Taiwan early warning system, Bull. Seismol. Soc. Am., 95(1), 347– 353. Wu, Y.-M., and L. Zhao (2006), Magnitude estimation using the first three seconds P-wave amplitude in earthquake early warning, Geophys. Res. Lett., 33, L16312, doi:10.1029/2006GL026871. Wu, Y.-M., H.-Y. Yen, L. Zhao, B.-S. Huang, and W.-T. Liang (2006), Magnitude determination using initial P waves: A single-station approach, Geophys. Res. Lett., 33, L05306, doi:10.1029/2005GL025395. Yoshida, S., K. Koketsu, B. Shibazaki, T. Sagiya, and Y. Yoshida (1996), Joint inversion of near- and far-field waveforms and geodetic data for the rupture process of the 1995 Kobe earthquake, J. Phys. Earth, 44, 437– 454. Zhao, D., F. Ochi, A. Hasegawa, and A. Yamamoto (2000), Evidence for the location and cause of large crustal earthquakes in Japan, J. Geophys. Res., 105, 13,579– 13,594. Zollo, A., M. Lancieri, and S. Nielsen (2006), Earthquake magnitude estimation from peak amplitudes of very early seismic signals on strong motion records, Geophys. Res. Lett., 33, L23312, doi:10.1029/ 2006GL027795. Zollo, A., M. Lancieri, and S. Nielsen (2007), Reply to comment by P. Rydelek et al. on ‘‘Earthquake magnitude estimation from peak amplitudes of very early seismic signals on strong motion records,’’ Geophys. Res. Lett., 34, L20303, doi:10.1029/2007GL030560.en
dc.description.obiettivoSpecifico4.1. Metodologie sismologiche per l'ingegneria sismicaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorLancieri, M.en
dc.contributor.authorZollo, A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentDipartimento di Scienze Fisiche, Universita` di Napoli Federico IIen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0002-8191-9566-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2007JB005386.pdf2.06 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

47
checked on Feb 10, 2021

Page view(s)

149
checked on Apr 20, 2024

Download(s)

33
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric