Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4803
DC FieldValueLanguage
dc.contributor.authorallBattaglia, J.; Dipartimento di Scienze Fisiche, Università degli Studi di Napoli Federico IIen
dc.contributor.authorallZollo, A.; Dipartimento di Scienze Fisiche, Università degli Studi di Napoli Federico IIen
dc.contributor.authorallVirieux, J.; UMR Géosciences Azuren
dc.contributor.authorallDello Iacono, D.; Dipartimento di Scienze Fisiche, Università degli Studi di Napoli Federico IIen
dc.date.accessioned2008-12-15T16:03:41Zen
dc.date.available2008-12-15T16:03:41Zen
dc.date.issued2008-10en
dc.identifier.urihttp://hdl.handle.net/2122/4803en
dc.description.abstractWe propose a strategy for merging both active and passive data sets in linearized tomographic inversion. We illustrate this in the reconstruction of 3D images of a complex volcanic structure, the Campi Flegrei caldera, located in the vicinity of the city of Naples, southern Italy. The caldera is occasionally the site of significant unrests characterized by large ground uplifts and seismicity. The P and S velocity models of the caldera structure are obtained by a tomographic inversion based on travel times recorded during two distinct experiments. The first data set is composed of 606 earthquakes recorded in 1984 and the second set is composed of recordings for 1528 shots produced during the SERAPIS experiment in 2001. The tomographic inversion is performed using an improved method based on an accurate finite-difference traveltime computation and a simultaneous inversion of both velocity models and earthquake locations. In order to determine the adequate inversion parameters and relative data weighting factors, we perform massive synthetic simulations allowing one to merge the two types of data optimally. The proper merging provides high resolution velocity models, which allow one to reliably retrieve velocity anomalies over a large part of the tomography area. The obtained images confirm the presence of a high P velocity ring in the southern part of the bay of Pozzuoli and extends its trace inland as compared to previous results. This annular anomaly represents the buried trace of the rim of the Campi Flegrei caldera. Its shape at 1.5 km depth is in good agreement with the location of hydrothermalized lava inferred by gravimetric data modelling. The Vp/Vs model confirms the presence of two characteristic features. At about 1 km depth a very high Vp/Vs anomaly is observed below the town of Pozzuoli and is interpreted as due to the presence of rocks that contain fluids in the liquid phase. A low Vp/Vs body extending at about 3–4 km depth below a large part of the caldera is interpreted as the top of formations that are enriched in gas under supercritical conditions.en
dc.language.isoEnglishen
dc.publisher.nameBlackwell publishingen
dc.relation.ispartofGeophysical Prospectingen
dc.relation.ispartofseries/56(2008)en
dc.subjectCampi Flegrei Calderaen
dc.subjectTomographyen
dc.titleMerging Active and Passive Data Sets in Travel-Time Tomography: The Case Study of Campi Flegrei Caldera (Southern Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber555-573en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismologyen
dc.identifier.doi10.1111/j.1365-2478.2007.00687.x.en
dc.relation.referencesAGIP 1987. Geologia e geofisica del sistema geotermico dei Campi Flegrei. Servizi Centrali per l’Esplorazione, SERG-MMESG, San Donato. Akaike H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 716–723. Aki K. and Lee W.H.K. 1976. Determination of three dimensional velocity anomalies under a seismic array using first P-arrival times from local earthquakes. Journal of Geophysical Research 81, 4381– 4399. Aster R. and Meyer R. 1988. Three-dimensional velocity structure and hypocenter distribution in the Campi Flegrei caldera, Italy. Tectonophysics 149, 195–218. Barberi F., Corrado G., Innocenti F. and Luongo G. 1984. Phlegrean Fields 1982-1984: Brief chronicle of a volcano emergency in a densely populated area. Bulletin of Volcanology 47, 175–185. Barberi F., Cassano E., La Torre P. and Sbrana A. 1991. Structural evolution of Campi Flegrei caldera in light of volcanological and geophysical data. Journal of Volcanology and Geothermal Research 48, 33–49. Battaglia M., Troise C., Obrizzo F., Pingue F. and De Natale G. 2006. Evidence of fluid migration as the source of deformation at Campi Flegrei caldera (Italy). Geophysical Resarch Letters 33, L01307. doi:10.1029/2005GL024904. Benz H.M., Chouet B.A., Dawson P.B., Lahr J.C., Page R.A. and Hole J.A. 1996. Three-dimensional P and S wave velocity structure of Redoubt Volcano, Alaska. Journal of Geophysical Research 101, 8111–8128. Berrino G., Corrado G., Luongo G. and Toro B. 1984. Ground deformation and gravity changes accompanying the 1982 Pozzuoli uplift. Bulletin of Volcanology 47, 187–200. Bonafede M. 1991. Hot fluid migration: an efficient source of ground deformation: application to 1982-1984 crisis at Campi Flegrei, Italy. Journal of Volcanology and Geothermal Research 48, 187–198. Bonafede M. and Mazzanti M. 1998. Modeling gravity variations consistent with ground deformation in the Campi Flegrei caldera, Italy. Journal of Volcanology and Geothermal Research 81, 137–157. Capuano P. and Achauer U. 2003. Gravity field modeling in the Vesuvius and Campanian area. In: TomoVes Seismic Project: Looking Inside Mt.Vesuvius (eds A. Zollo, A. Bobbio, P. Gasparini, R. Casale and M. Yeroyanni). Cuen, Napoli. Chiarabba C. and Moretti M. 2006. An insight into the unrest phenomena at the Campi Flegrei caldera from Vp and Vp/Vs tomography. Terra Nova 18, 373–379. Chiodini G., Frondini F., Cardellini C., Granieri D., Marini L. and Ventura G. 2001. CO2 degassing and energy release at Solfataravolcano, Campi Flegrei, Italy. Journal of Geophysical Research 106, 16213–16222. Chiodini G., Todesco M., Caliro S., Del Gaudio C., Macedonio G.and Russo M. 2003. Magma degassing as a trigger of bradyseismic events: The case of Phlegrean Fields (Italy). Geophysical Research Letters 30, 1434. doi:10.1029/2002GL016790. Crosson R. 1976. Crustal structure modeling of earthquake data. 1. Simultaneous least square estimation of hypocenter and velocity parameters. Journal of Geophysical Research 81, 3036–3046. Dello Iacono D., Zollo A., Vassallo M., Vanorio T. and Judenherc S. 2007. Seismic image and rock properties of the very shallow structure of Campi Flegrei caldera (southern Italy). Bulletin of Volcanology, submitted. Di Vito M.A., Lirer L., Mastrolorenzo G. and Rolandi G. 1987. The Monte Nuovo eruption (Campi Flegrei, Italy). Bulletin of Volcanology 49, 608–615. Dvorak J.J. and Berrino G. 1991. Recent ground movement and seismic activity in Campi Flegrei, Southern Italy: episodic growth of a resurgent dome. Journal of Geophysical Research 96, 2309–2323. Ferrucci F., Hirn A., de Natale G., Virieux J. and Mirabile L. 1992. P-SV conversions at a shallow boundary beneath Campi Flegrei caldera (Italy) - Evidence for the magma chamber. Journal of Geophysical Research 97, 15351–15359. Florio G., Fedi M., Cella F. and Rapolla A. 1999. The Campanian Plain and Campi Flegrei: structural setting from potential field data. Journal of Volcanology and Geothermal Research 91, 361–379. Gaeta S.G., De Natale G., Peluso F., Mastrolorenzo G., Castagnolo D., Troise C., Pingue F., Mita G. and Rossano S. 1998. Genesis and evolution of unrest episodes at Campi Flegrei caldera: the role of thermal fluid-dynamical processes in the geothermal system. Journal of Geophysical Research 103, 20921–20933. Gaeta F.S., Peluso F., Arienzo I., Castagnolo D., De Natale G., Milano G., Albanese C. and Mita D.G. 2003. A physical appraisal of a new aspect of bradyseism: The miniuplifts. Journal of Geophysical Research 33, 2363. doi:10.1029/2002JB001913. Gottsman, J., Rymer H. and Berrino G. 2006. Unrest at the Campi Flegrei caldera (Italy): A critical evaluation of source parameters from geodetic data inversion. Journal of Volcanology and Geothermal Research 150, 132–145. Judenherc S. and Zollo A. 2004. The Bay of Naples (Southern Italy): Constraints on the volcanic structures inferred from a dense seismic survey. Journal of Geophysical Research 33, B10312. Kissling E., Ellsworth W. L., Eberhart-Phillips D. and Kradolfer U. 1994. Initial reference models in local earthquake tomography. Journal of Geophysical Research 99, 19635–19646. Latorre D., Virieux J., Monfret T., Monteiller V., Vanorio T., Got J.-L. and Lyon-Caen H. 2004. A new seismic tomography of Aigion area (Gulf of Corinth-Greece) from a 1991 dataset. Geophysical Journal International 159, 1013–1031. Le Meur H., Virieux J. and Podvin P. 1997. Seismic tomography of the Gulf of Corinth: A comparison of methods. Annales Geophysicae 40, 1–25. LeeW.H.K. and Lahr J.C. 1975. HYPO71 revised): A computer program for determining hypocenter, magnitude, and first motion pattern of local earthquakes. US Geological Survey Open File Report 75–311. Monteiller V. 2005. Tomographie ´ al’aide de d´ecalages temporels d’ondes sismiques P : d´eveloppements m´ethodologiques et applications. PhD thesis, Universit´e de Savoie. Newhall C.G. and Dzurizin D. 1988. Historical unrest at large calderas of the world. US Geological Survey Bulletin 33, 1108. Orsi G., de Vito S. and Di Vito M. 1996. The restless, resurgent Campi Flegrei nested caldera (Italy): Constraints on its evolution and configuration. Journal of Volcanology and Geothermal Research 74, 179–214. Orsi G., Civetta L., Del Gaudio C., de Vita S., Di Vito M.A., Isaia R., Petrazzuoli S.M., Ricciardi G.P. and Ricco C. 1999. Short-term ground deformations and seismicity in the resurgent Campi Flegrei caldera (Italy): An example of active block-resurgence in a densely populated area. Journal of Volcanology and Geothermal Research 91, 415–451. Paige C.C. and Saunders M.A. 1982. LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Transactions on Mathematical Software 8, 43–71. Podvin P. and Lecomte I. 1991. Finite difference computation of traveltimes in very contrasted velocity models: A massively parallel approach and its associated tools. Geophysical Journal International 105, 271–284. Scandone R., Bellucci F., Lirer L. and Rolandi G. 1991. The structure of the Campanian plain and the activity of the Napolitan volcanoes. Journal of Volcanology and Geothermal Research 48, 1–31. Schneider J., Aster R., Powell L. and Meyer R. 1987. Timing of portable seismographs from Omega navigational signals. Bulletin of the Seismological Society of America 77, 1457–1478. Spakman W. and Nolet G. 1988. Imaging algorithms, accuracy and resolution. In: Mathematical GeophysicsM(ed.N. Vlaar), pp. 155–187. Springer. Tarantola A. and Valette B. 1982. Generalized nonlinear inverse problems solved using the least-squares criterion. Reviews of Geophysics and Space Physics 20, 219–232. Thurber C.H. 1992. Hypocenter-velocity structure coupling in local earthquake tomography. Physics of the Earth and Planetary Interiors 75, 55–62. Tramelli A., Del Pezzo E., Bianco F. and Boschi E. 2006. 3D scattering image of the Campi Flegrei caldera (Southern Italy). Physics of the Earth and Planetary Interiors 155, 269–280. Troise C., De Natale G., Pingue F., Obrizzo F., De Martino P., Tammaro U. and Boschi E. 2007. Renewed ground uplift at Campi Flegrei caldera (Italy): New insight on magmatic processes and forecast. Geophysical Research Letters 33, L03301. doi:10.1029/2006GL028545. Vanorio T., Virieux J., Capuano P. and Russo G. 2005. Threedimensional seismic tomography from P wave and S wave microearthquake traveltimes and rock physics characterization of the Campi Flegrei Caldera. Journal of Geophysical Research 33, B03201. doi:10.1029/2004GL003102. Zollo A., Judenherc S., Auger E., D’Auria L., Virieux J., Capuano P., Chiarabba C., de Franco R., Makris J., Michelini A. and Musacchio G. 2003. Evidence for the buried rim of Campi Flegrei caldera from 3-d active seismic imaging. Geophysical Research Letters 33. doi:10.1029/2003GL018173.en
dc.description.obiettivoSpecifico1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attiveen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorBattaglia, J.en
dc.contributor.authorZollo, A.en
dc.contributor.authorVirieux, J.en
dc.contributor.authorDello Iacono, D.en
dc.contributor.departmentDipartimento di Scienze Fisiche, Università degli Studi di Napoli Federico IIen
dc.contributor.departmentDipartimento di Scienze Fisiche, Università degli Studi di Napoli Federico IIen
dc.contributor.departmentUMR Géosciences Azuren
dc.contributor.departmentDipartimento di Scienze Fisiche, Università degli Studi di Napoli Federico IIen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDipartimento di Scienze Fisiche, Università degli Studi di Napoli Federico II-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptUMR Geosciences Azur, Sophia Antipolis, France-
crisitem.author.deptDipartimento di Scienze Fisiche, Università di Napoli Federico II, Napoli, Italy-
crisitem.author.orcid0000-0002-9513-1200-
crisitem.author.orcid0000-0002-8191-9566-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
GeoProsp_Battaglia.pdf1.48 MBAdobe PDFView/Open
Show simple item record

Page view(s) 50

154
checked on Mar 27, 2024

Download(s) 20

334
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric