Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4801
DC FieldValueLanguage
dc.contributor.authorallBai, L.; Earth and Planetary Sciences, GEOTOP–UQAM–McGill Research Centre, McGill University, 3450 Rue University Street, Montreal,en
dc.contributor.authorallBaker, D. R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallRivers, M.; GSECARS and Department of Geophysical Sciences, University of Chicago, IL 60439, USAen
dc.date.accessioned2008-12-15T15:56:19Zen
dc.date.available2008-12-15T15:56:19Zen
dc.date.issued2008-03-30en
dc.identifier.urihttp://hdl.handle.net/2122/4801en
dc.description.abstractVolcanic eruptions are characterized by intense degassing, thus it is imperative to have high quality laboratory data to constrain degassing mechanisms. In order to investigate bubble formation and growth at 1 atm, degassing experiments using a Stromboli basalt were performed on the GSECARS X-ray beamline at the Advanced Photon Source. Volatile-bearing glasses were synthesized at 1250 °C and 1000 MPa in a piston cylinder with H2O or mixtures of H2O+CO2; they were then heated in-situ on the X-ray beamline at 1 atm. Bubble growth was observed in-situ using X-ray radiography. The 3D bubble size distributions in the quenched samples and a natural Stromboli pumice were studied by synchrotron X-ray microtomography. The results show that bubble nucleation and growth in basaltic melts are volatile-concentration dependent. Bubbles can easily form in melts initially containing high volatile concentrations. The effect of CO2 on bubble nucleation and growth becomes significant at large CO2 concentrations of 880 to 1480 ppm, but is not important at lower concentrations. Multiple nucleation events occur in most of these degassing experiments, and they are more pronounced in more supersaturated melts. Bubble growth is controlled by viscosity near glass transition temperatures and by diffusion at higher temperatures. Bubbles begin to pop 10 to 20 s after a foam is developed at vesicularities of 65% to 83%. Bubble size distributions follow power–law relations at vesicularities of 1% to 65%, and bubble size distributions evolve from power–law relations to exponential relations at vesicularities of 65% to 83%. This evolution is associated with the change from far-from-equilibrium degassing to near-equilibrium degassing. During far-from-equilibrium degassing, multiple nucleation events are pronounced, and possibly account for the generation of power–law relations. When the system reaches near-equilibrium degassing, coalescence is dominant and leads to the formation of bubbles of similar size. Therefore, bubble size distributions are described by exponential relations.en
dc.description.sponsorshipNSERCen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofEarth and Planetary Science Lettersen
dc.relation.ispartofseries3-4/267(2008)en
dc.subjectbasalten
dc.subjectStrombolien
dc.subjectbubble size distributionen
dc.subjectdegassingen
dc.titleExperimental study of bubble growth in Stromboli basalt melts at 1 atmen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber533-547en
dc.identifier.URLhttp://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235801%232008%23997329996%23681158%23FLA%23&_cdi=5801&_pubType=J&_auth=y&_acct=C000067082&_version=1&_urlVersion=0&_userid=5381242&md5=9665dcb0ab360b5e215b5765139a7cc9en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanismen
dc.identifier.doi10.1016/j.epsl.2007.11.063en
dc.relation.referencesAbramoff, M.D., Magelhaes, P.J., Ram, S.J., 2004. Image processing with ImageJ. Biophoton. Int. 11, 36–42. Allard, P., Carbonnelle, J., Dajlevic, D., Bronec, J.L.E., Morel, P., Robe, M.C., Maurenas, J.M., Faivre-Pierret, R., Martin, D., Sabroux, J.C., Zettwoog, P., 1991. Eruptive and diffuse emissions of CO2 from Mount Etna. Nature 351, 387–391. Bagdassarov, N.S., Dingwell, D.B., 1993. Deformation of foamed rhyolites under internal and external stresses: an experimental investigation. Bull. Volcanol. 55, 147–154. Bagdassarov, N.S., Dingwell, D.B., Wilding, M.C., 1996. Rhyolite magma degassing: an experimental study of melt vesiculation. Bull. Volcanol. 57, 587–601. Baker, D.R., 2004. Piston-cylinder calibration at 400 to 500 MPa: a comparison of using water solubility in albite melt and NaCl melting. Am. Mineral. 89, 1553–1556. Baker, D.R., Lang, P., Robert, G., Bergevin, J.F., Allard, E., Bai, L.P., 2006. Bubble growth in slightly supersaturated albite melt at constant pressure. Geochim. Cosmochim. Acta 70, 1821–1838. Blower, J.D., Keating, J.P., Mader, H.M., Phillips, J.C., 2001. Inferring volcanic degassing processes from vesicle size distributions. Geophys. Res. Lett. 28, 347–350. Blower, J.D., Keating, J.P., Mader, H.M., Phillips, J.C., 2002. The evolution of bubble size distributions in volcanic eruptions. J. Volcanol. Geotherm. Res. 120, 1–23. Cashman, K.V., Mangan, M.T., Newman, S., 1994. Surface degassing and modifications to vesicle size distributions in active basalt flows. J. Volcanol. Geotherm. Res. 61, 45–68. Dixon, J.E., Stolper, E.M., Holloway, J.R., 1995. An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part 1: calibration and solubility models. J. Petrol. 36, 1607–1631. Fink, J.H., Anderson, S.W., Manley, C.R., 1992. Textural constraints on effusive silicic volcanism—beyond the permeable foam model. J. Geophys. Res. 97, 9073–9083. Gaonac'h, H., Lovejoy, S., Schertzer, D., 2003. Percolating magmas and explosive volcanism. Geophys. Res. Lett. 30, 1559. doi:10.1029/2002GL016022. Gaonac'h, H., Lovejoy, S., Stix, J., Schertzer, D., 1996. A scaling growth model for bubbles in basaltic lava flows. Earth Planet. Sci. Lett. 139, 395–409. Giordano, D., Dingwell, D.B., 2003. Non-Arrhenian multicomponent melt viscosity: a model. Earth Planet. Sci. Lett. 208, 337–349. Giordano, D., Nichols, A.R.L., Dingwell, D.B., 2005. Glass transition temperatures of natural hydrous melts: a relationship with shear viscosity and implications for the welding process. J. Volcanol. Geotherm. Res. 142, 105–118. Gonnermann, H.M., Manga, M., 2003. Explosive volcanism may not be an inevitable consequence of magma fragmentation. Nature 426, 432–435. Harris, A.J.L., Stevenson, D.S., 1997. Magma budget and steady-state activity of volcano and Stromboli. Geophys. Res. Lett. 24, 1043–1046. Herd, R., Pinkerton, H., 1997. Bubble coalescence in basaltic lava: its impact on the evolution of bubble populations. J. Volcanol. Geotherm. Res. 75, 137–157. Holloway, J.R., Blank, J.G., 1994. Application of experimental results to C–O–H species in natural melts. Rev. Miner. 30, 187–230. Hurwitz, S., Navon, O., 1994. Bubble nucleation in rhyolitic melts: experiments at high pressure, temperature, and water content. Earth Planet. Sci. Lett. 122, 267–280. Klug, C., Cashman, K.V., 1996. Permeability development in vesiculating magmas: implication for fragmentation. Bull. Volcanol. 58, 87–100. Klug, C., Cashman, K.V., Bacon, C.R., 2002. Structure and physical characteristics of pumice from the climatic eruption of Mount Mazama (Crater Lake), Oregon. Bull. Volcanol. 64, 486–501. Larseb, J.F., Denis, M.H., Gardner, J.E., 2004. Experimental study of bubble coalescence in rhyolitic and phonolitic melts. Geochim. Cosmochim Acta 68, 333–344. Larsen, J.F., Gardner, J.E., 2000. Experimental constraints on bubble interactions in rhyolite melts: implications for vesicle size distributions. Earth Planet. Sci. Lett. 180, 201–214. Lovejoy, S.,Gaonac'h,H., Schertzer,D., 2004.Bubble distributions and dynamics: the expansion-coalescence equation. J. Geophys. Res. 109. doi:10.1029/ 2003JB002823. Lyakhovsky, V., Hurwitz, S., Navon, O., 1996. Bubble growth in rhyolitic melts: experimental and numerical investigation. Bull. Volcanol. 58, 19–32. Mader, H.D., Brodsky, E.E., Howard, D., Sturtevant, B., 1997. Laboratory simulations of sustained volcanic eruptions. Nature 388, 462–464. Mader, H.M., Zhang, Y., Phillips, J.C., Sparks, R.S.J., Sturtevant, B., Stolper, E., 1994. Experimental simulations of explosive degassing magma. Nature 372, 85–88. Mangan, M., Mastin, L., Sisson, T., 2004. Gas evolution in eruptive conduits: combining insights from high temperature and pressure decompression experiments with steady-state flow modeling. J. Volcanol. Geotherm. Res. 129, 23–36. Mangan, M., Sisson, T., 2005. Evolution of melt-vapor surface tension in silicic volcanic systems: experiments with hydrous melts. J. Geophys. Res. 110, B01202. doi:10.1029/2004JB003215. Mangan, M.T., Cashman, K.V., 1996. The structure of basaltic scoria and reticulite and inferences for vesiculation, foam formation, and fragmentation in lava fountains. J. Volcanol. Geotherm. Res. 73, 1–18. Mangan, M.T., Cashman, K.V., Newman, S., 1993. Vesiculation of basaltic magma during eruption. Geology, 21, 157–160. Martel, C., Bureau, H., 2001. In situ high-pressure and high-temperature bubble growth in silicic melts. Earth Planet. Sci. Lett. 191, 115–127. Marti, J., Soriano, C., Dingwell, D.B., 1999. Tube pumices as strain markers of the ductile–brittle transition during magma fragmentation. Nature 402, 650–653. Mourtada-Bonnefoi, C.C., Laporte, D., 2002. Homogeneous bubble nucleation in rhyolitic magmas: an experimental study of the effect of H2O and CO2. J. Geophys. Res. 107, 2066. doi:10.1029/2001JB000290. Mysen, B.O., Richet, P., 2005. Silicate Glasses and Melts: Properties and Structure. Elsevier, Amsterdam, pp. 35–68. Navon, O., Chekhmir, A., Lyakhovsky, V., 1998. Bubble growth in highly viscous melts: theory, experiments, and autoexplosivity of dome lavas. Earth Planet. Sci. Lett. 160, 763–776. Navon, O., Lyakhovsky, V., 1998. Vesiculation processes in silicic magmas. In: Gilbert, J.S., Sparks, R.S.J. (Eds.), The Physics of Explosive Volcanic Eruptions. Geological Society, London, vol. 145, pp. 27–50. Papale, P., 1999. Strain-induced magma fragmentation in explosive eruptions. Nature 397, 425–428. Papale, P., Polacci, M., 1999. Role of carbon dioxide in the dynamics of magma ascent in explosive eruptions. Bull. Volcanol. 60, 583–594. Polacci, M., Baker, D.R., Mancini, L., Tromba, G., Zanini, F., 2006. Threedimensional investigation of volcanic texture by X-ray microtomography and implications for conduit process. Geophys. Res. Lett. 33, L13312. doi:10.1029/2006GL026241. Proussevitch, A.A., Sahagian, D.L., 1998. Dynamics and energetics of bubble growth in magmas: analytical formulation and numerical modeling. J. Geophys. Res. 103, 18223–18251. Proussevitch, A.A., Sahagian, D.L., 1996. Dynamics of coupled diffusive and decompressive bubble growth in magmatic systems. J. Geophys. Res. 101, 17447–17456. Proussevitch, A.A., Sahagian, D.L., Kutolin, V.A., 1993. Stability of foams in silicate melts. J. Volcanol. Geotherm. Res. 59, 161–178. Rasband, W.S., 1997–2005. ImageJ. U. S. National Institutes of Health, Bethesda, Maryland, USA. http://rsb.info.nih.gov/ij/. Reed,W.J., Hughes, B.D., 2002. From gene families and genera to incomes and interpret file size: why power–laws are so common in nature. Phys. Rev. Lett. 66, 067103. Rivers, M.L., Wang, Y., 2006. Recent developments in microtomography at GeoSoilEnviroCARS. In: Bonse, Ulrich (Ed.), Developments in X-Ray Tomography V-SPIE. SPIE, vol. 6318, p. J3180. Sahagian, D.L., Proussevitch, A.A., 1998. 3D particle size distributions from 2D observations: stereology for natural applications. J. Volcanol. Geotherm. Res. 84, 173–196. Song, S.R., Jones, K.W., Lindquist, B.W., Dowd, B.A., Sahagian, D.L., 2001. Synchrotron X-ray computed microtomography: studies on vesiculated basaltic rocks. Bull. Volcanol. 63, 252–263. Sparks, R.S.J., 1978. The dynamics of bubble formation and growth in magmas: a review and analysis. J. Volcanol. Geotherm. Res. 3, 1–37. Stein, D.J., Spera, F.J., 1992. Rheology and microstructure of magmatic emulsions: theory and experiments. J. Volcanol. Geotherm. Res. 49, 157–174. Thomas, N., Jaupart, C., Vergniolle, S., 1994. On the vesicularity of pumice. J. Geophys. Res. 99, 15633–15644. Toramaru, A., 1995. Numerical study of nucleation and growth of bubbles in viscous magma. J. Geophys. Res. 100, 1913–1932. Vergniolle, S., Boichu, M., Caplan-Auerbach, J., 2004. Acoustic measurements of the 1999 basaltic eruption of Shishaldin volcano, Alaska. 1, origin of Strombolian activity. J. Volcanol. Geotherm. Res. 137, 109–134. Vergniolle, S., Brandeis, G., Mareschal, J.C., 1996. Strombolian explosions: eruption dynamics determined from acoustic measurements. J. Geophys. Res. 101, 20449–20466. Wright, H.M.N., Roberts, J.J., Cashman, K.V., 2006. Permeability of anisotropic tube pumice: model calculations and measurements. Geophys. Res. Lett. 33, L17316. doi:10.1029/2006GL027224. Yamada, K., Tanaka, H., Nakazawa, K., Emori, H., 2005. A new theory of bubble formation in magma. J. Geophys. Res. 110, 1–17. Zhang, Y.X., 1999. A criterion for the fragmentation of bubbly magma based on brittle failure theory. Nature 402, 648–650. L. Bai et al. / Earth and Planetary Science Letters 267 (2008) 533–547 547.en
dc.description.obiettivoSpecifico2.3. TTC - Laboratori di chimica e fisica delle rocceen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorBai, L.en
dc.contributor.authorBaker, D. R.en
dc.contributor.authorRivers, M.en
dc.contributor.departmentEarth and Planetary Sciences, GEOTOP–UQAM–McGill Research Centre, McGill University, 3450 Rue University Street, Montreal,en
dc.contributor.departmentGSECARS and Department of Geophysical Sciences, University of Chicago, IL 60439, USAen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptEarth and Planetary Sciences, McGill University, Montreal, Quebec, Canada-
crisitem.author.deptGSECARS and Department of Geophysical Sciences, University of Chicago, IL 60439, USA-
crisitem.author.orcid0000-0002-6543-3283-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
08.pdfarticle2.04 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

54
checked on Feb 10, 2021

Page view(s) 50

182
checked on Apr 17, 2024

Download(s)

26
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric