Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4733
DC FieldValueLanguage
dc.contributor.authorallCorradini, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallSpinetti, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallCarboni, E.; Atmospheric Oceanic and Planetary Physics, Clarendon Laboratory, University of Oxforden
dc.contributor.authorallTirelli, C.; University of Rome - La Sapienzaen
dc.contributor.authorallBuongiorno, M. F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallPugnaghi, S.; Università di Modena e Reggio Emiliaen
dc.contributor.authorallGangale, G.; Università di Modena e Reggio Emiliaen
dc.date.accessioned2008-12-15T09:22:28Zen
dc.date.available2008-12-15T09:22:28Zen
dc.date.issued2008-11-21en
dc.identifier.urihttp://hdl.handle.net/2122/4733en
dc.description.abstractA retrieval of tropospheric volcanic ash from Mt Etna has been carried out, using measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS). The NASA-MODIS satellite instrument acquires images in the 0.4 to 14 μm spectral range with a spatial resolution of 1 km at nadir. The eruption which occurred on 24 November 2006 is considered as a test case in this work. In order to derive the ash plume optical thickness, the particle effective radius and the total mass, the Brightness Temperature Difference procedure has been applied to MODIS channels 31 (centered at 11 μm) and 32 (centered at 12 μm). Channel 5 (centered at 1.24 μm) has been used to refine the cloud discrimination, exploiting the distinct reflectivity of meteorological and volcanic clouds in the near infrared spectral range. The detection of volcanic ash pixels has been significantly improved by applying an atmospheric water vapor correction to MODIS data. This procedure doubles the number of pixels identified as containing volcanic ash compared to the original method. The retrieved mean ash optical thickness at 0.55 μm, mean particle effective radius and the total ash mass in the plume are 0.4, 3.5 μm and 3620 tons, respectively. A detailed sensitivity analysis has been carried out to investigate errors in the retrieval caused by the uncertainty in various parameters: surface temperature and emissivity, plume geometry (altitude and thickness), ash type and atmospheric water vapor. Results show that the largest contributions to retrieval errors are from uncertainty in surface parameters, aerosol type and atmospheric water vapor. The total tropospheric volcanic ash retrieval errors are estimated to be 30%, 30% and 40% for mean AOT, mean effective radius and total mass retrieval, respectively.en
dc.language.isoEnglishen
dc.publisher.nameSPIEen
dc.relation.ispartofJournal of Applied Remote Sensingen
dc.relation.ispartofseries1/2 (2008)en
dc.subjectvolcanic ashen
dc.subjectMt. Etna volcanoen
dc.subjectMODISen
dc.subjectsensitivity studyen
dc.subjectMODTRAN radiative transfer modelen
dc.titleMt. Etna tropospheric ash retrieval and sensitivity analysis using Moderate Resolution Imaging Spectroradiometer measurementsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber023550en
dc.identifier.URLhttp://spiedigitallibrary.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JARSC4000002000001023550000001&idtype=cvips&gifs=Yesen
dc.subject.INGV01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniquesen
dc.identifier.doi10.1117/1.3046674en
dc.relation.references[1] J. P. Kotra, D. L. Finnegan, W. H. Zoller, M. A. Hart, and J. L. Moyers, “El Chichon: composition of llume gases and particles,” Science 222, 1018 (1983) [doi:10.1126/science.222.4627.1018]. [2] R. A. F. Cas and J. V. Wright, Volcanic successions modern and ancient, Chapman & Hall press (1987). [3] G. Fiocco, D. Fua, and G. Visconti, “The Mount Pinatubo eruption effects on the atmosphere and climate,” Proc. NATO ASI Series, Series 1: Global Environmental Change 42 (1984). Journal of Applied Remote Sensing, Vol. 2, 023550 (2008) Page 17 [4] C. J. Horwell and P. J. Baxter, “The respiratory health hazards of volcanic ash: a review for volcanic risk mitigation,” Bull. Volcanol. 69 (1), 1-24 (2006) [doi:10.1007/s00445- 006-0052-y]. [5] C. Stewart, D. M. Johnston, G. S. Leonard, C. J. Horwell, T. Thordarson, and S. J. Cronin, “Contamination of water supplies by volcanic ashfall: a literature review and simple impact modelling,” J. Volcanol. Geoth. Res. 158 (3-4), 296-306 (2006) [doi:10.1016/j.jvolgeores.2006.07.002]. [6] L. Gurioli, M. T. Pareschi, E. Zanella, R. Lanza, E. Deluca, and M. Bisson, “Interaction of pyroclastic density currentswith human settlements: Evidence fromancient Pompeii,” Geology 33 (6), 441444 (2005) [doi:10.1130/G21294.1]. [7] T. J. Casadevall, (ed.), “Volcanic ash and aviation safety,” Proceedings of the First International Symposium on Volcanic Ash and Aviation Safety: U.S. Geol. Surv. Bull. 2047, 450 (1994). [8] G. L.Hufford,L. J. Salinas, J. J. Simpson, and E.G. Barske,&D. C. Pieri, “Operational implications or airborne volcanic ash,” Bull. Am. Meteorol. Soc. 81 (4), 745755 (2000) [doi:10.1175/1520-0477(2000)081<0745:OIOAVA>2.3.CO;2]. [9] A. J. Prata, “Observation of volcanic ash clouds using AVHRR-2 radiances,” Int. J. Rem. Sens. 10 (4-5), 751-761 (1989) [doi:10.1080/01431168908903916]. [10] A. J. Prata, “Radiative transfer calculations for volcanic ash clouds,” Geophys. Res. Lett. 16(11), 1293-1296 (1989) [doi:10.1029/GL016i011p01293]. [11] S. Wen and W. I. Rose, “Retrieval of sizes and total masses of particles in volcanic clouds using AVHRR bands 4 and 5,” J. Geophys. Res. 99 (D3), 5421-5431 (1994) [doi:10.1029/93JD03340]. [12] A. J. Prata and I. F. Grant, “Determination of mass loadings and plume heights of volcanic ash clouds from satellite data,” CSIROAtmosph. Res. Tech. Pap. 48, 39, Commonw. Sci. and Ind. res. Organ.,Melburne, Victoria, Australia (2001). [13] T. Yu, W. I. Rose, and A. J. Prata, “Atmospheric correction for satellite-based volcanic ash mapping and retrievals using “split window” IR data from GOES and AVHRR,” J. Geophys. Res. 107 (D16), 4311 (2002) [doi:10.1029/2001JD000706]. [14] N. A., Krotkov,A. J. Krueger, P. K. Bhartia, “Ultraviolet optical model of volcanic clouds for remote sensing of ash and sulfur dioxide,” J. Geophys. Res., 102 (D18), 21891-21904 (1997), [doi:10.1029/97JD01690] [15] N. A., Krotkov, O. Torres, C. Seftor, A. J. Krueger, A. Kostinski, W. I. Rose, G. J. S. Bluth, D. Schneider, and S. J. Schaefer, “Comparison of TOMS and AVHRR volcanic ash retrievals from the August 1992 eruption of Mt. Spurr,” Geophys. Res. Lett. 26(4) 455458 (1999) [doi:10.1029/1998GL900278] [16] L. E. Holasek andW. I Rose, “Anatomy of 1986 Augustine volcano eruptions as recorded by multispectral image processing of digital AVHRR weather satellite data,” Bull. Volcanol. 53 420-435 (1991) [doi:10.1007/BF00258183]. [17] D. J. Shneider,W. I. Rose, L. R. Coke, G. J. S. Bluth, I. Sprod, andA. J. Krueger, “Early evolution of stratospheric volcanic eruption cloud as observed with TOMS and AVHRR,” J. Geophys. Res. 104, 4037-4050 (1999) [doi:10.1029/1998JD200073]. [18] A. Bonfiglio, M. Macchiato, N. Pergola, and C. Pietrapertosa, & V. Tramutoli, “AVHRR automated detection of volcanic clouds,” Int. J. Rem. Sens. 26 (1), 927 (2005) [doi:10.1080/0143116042000274122]. [19] W. Rose and G.C. Mayberry, “Use of GOES thermal infrared imagery for eruption scale measurements, SoufriereHills,Montserrat,”Geoph. Res. Lett. 27 (19), 3097-3100 (2000) [doi:10.1029/1999GL008459]. Journal of Applied Remote Sensing, Vol. 2, 023550 (2008) Page 18 [20] G. P. Ellrod, B. H. Connell, and D. W. Hillger, Improved detection of airborne volcanic ash using multispectral infrared satellite data, J. Geophys. Res. 108 (D12), 4356-4369 (2003) [doi:10.1029/2002JD002802]. [21] D. W. Hillger and J. D. Clark, “Principal component image analysis of MODIS for volcanic ash. Part I: Most Important Bands and Implications for Future GOES Imagers,” J. Appl. Meteorol. 41 (10), 985-1001 (2002) [doi:10.1175/1520- 0450(2002)041<1003:PCIAOM>2.0.CO;2]. [22] I. M. Watson, V. J. Realmuto, W. I. Rose, A. J. Prata, G. J. S. Bluth, Y. Gu, C. E. Bader, and T. Yu, “Thermal infrared remote sensing of volcanic emissions using the moderate resolution imaging spectroradiometer,” J. Volcanol. Geoth. Res. 135 (1-2), 75-89 15 July (2004) [doi:10.1016/j.jvolgeores.2003.12.017]. [23] A. Tupper, S. Carn, J. Davey, Y. Kamada, R. Potts, and F. Prata, “An evaluation of volcanic cloud detection techniques during recent significant eruption in the western Ring of Fire,” Rem. Sens. Environ. 91, 2746 (2004) [doi:10.1016/j.rse.2004.02.004]. [24] A. Berk, L. S. Bernstein, and D. C. Robertson, “MODTRAN: A Moderate Resolution Model for LOWTRAN7,” Rep. GL-TR-89-0122 Air Force Geophys. Lab., Bedford, MA (1989). [25] G. P. Anderson, F. X. Kneizys, J. H. Chetwynd, J. Wang, M. L. Hoke, L. S. Rithman, L. M. Kimball, R. A. McClatchey, E. P. Shettle., S. A. Clought, W. O. Gallery, L. W. Abreu, and J. E. A. Selby, “FASCODE/MODTRAN/LOWTRAN: Past/Present/Future”, 18th Annual Review Conference on Atmospheric Transmission Models, 6-8 June (1995). [26] W. L. Barnes, T. S. Pagano, and V. V. Salomonson, “Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1,” IEEE Trans. Geosci. Rem. Sens. 36 (4), 1088-1100 (1998) [doi:10.1109/36.700993]. [27] “MODIS home page”, http://modis.gsfc.nasa.gov/ [28] P. Allard, J. Carbonelle, D. Dajlevic, J. Le Bronec, P. Morel, M.C. Robe, J.M. Maurenas, R.F. Pierret, D. Martins, J.C. Sabroux, and P. Zettwoog, “Eruptive and diffuse emission of CO2 from Mount Etna,“ Nature 351, 387 (1991) [doi:10.1038/351387a0]. [29] D. Andronico, S. Branca, S. Calvari, M. Burton, T. Caltabiano, R. A. Corsaro, P. Del Carlo, G. Garfi, L. Lodato, L. Miraglia, F. Mur, M. Neri, E. Pecora, M. Pompilio, G. Salerno, and L. Spampinato, “A multi-disciplinary study of the 2002-03 Etna eruption: insights into a complex plumbing system,” Bull. Volcanol. 67 314-330 (2005) [doi:10.1007/s00445-004-0372-8]. [30] C. Spinetti, M.F. Buongiorno, F. Doumaz , M. Musacchio, V. Lombardo, A. Harris, A. Steffke, and S. Amici, “Rapporto eruzione Etna 21-24 Novembre 2006,” (Nov. 24, 2006) http://www.ct.ingv.it/Report/RPTVG200611224Roma.pdf. [31] E. De Beni, G. Norini, and M. Polacci, “Aggiornamento dellattivit eruttiva (24 Novembre 2006, ore 13:00),” (Nov. 24, 2006) http://www.ct.ingv.it/Report/ RPTVGALT20061124 1300.pdf [32] B. Behncke and M. Neri, “The July-August 2001 eruption of Mt. Etna (Sicily),” Bull. Volcanol. 65 461-476, (2003) [doi:1010.1007/s00445-004-0372-8]. [33] C. Spinetti, D. Andronico, J. Taddeucci, A. Cristaldi, and M. F. Buongiorno, “Ash plumes at MT. Etna during the 2006 eruption: observations from satellite to microscope,” presented at 24th IUGG Conference, 2-13 July 2007, Perugia (Italy), Poster Session VS015. [34] G. C. Mayberry,W. I. Rose, and G. J. S. Bluth, “Dinamics of the volcanic and meteorological clouds produced by the December 26, 1997 eruption of Soufriere Hills volcano, Montserrat, 1995-99,” edited by T. Druitt and P. Kokelaar, Mem. Geol. Soc. Lond. 21, 539-555 (2002). Journal of Applied Remote Sensing, Vol. 2, 023550 (2008) Page 19 [35] S. Pugnaghi, S. Teggi, S. Corradini, M. F. Buongiorno, M. P. Bogliolo, and L. Merucci, “Estimation of SO2 abundance in the eruptive plume of Mt. Etna using two MIVIS thermal infrared channels: a case study from the Sicily-1997 campaign,” Bull. Volcanol. 64 328-337 (2002) [doi:10.1007/s00445-002-0211-8]. [36] S. Corradini, S. Pugnaghi, S. Teggi, M. F. Buongiorno, and M. P. Bogliolo, Will ASTER see the Etna SO2 plume?, Int. J. Rem. Sens. 24 (6), 12071218 (2003) [doi:10.1080/01431160210153084]. [37] S. Pugnaghi, G. Gangale, S. Corradini, and M. F. Buongiorno, “Mt. Etna sulfur dioxide flux monitoring using ASTER-TIR data and atmospheric observations,” J. Volcanol. Geoth. Res. 152 7490 (2006) [doi:10.1016/j.jvolgeores.2005.10.004]. [38] Oxford University, Atmospheric Oceanic and Planetary Physics Dept., EODG group Mie Code, “Light scattering routines,” (2006) http://www.atm.ox.ac.uk/code/mie/index.html. [39] F. E. Volz, “Infrared optical constants of ammonium sulfate, Sahara dust, volcanic pumice and fly ash,” Appl. Optic. 12 564-568 (1973). [40] “NASA emissivities database,” http://speclib.jpl.nasa.gov/ [41] J. B. Pollack, O. B. Toon, and B. N. Khare, “Optical properties of some terrestrial rocks and glasses”, Proc. Icarus 19 372-389 (1973) [doi:10.1016/0019-1035(73)90115-2]. [42] G. Gangale, “Controllo del flusso di SO2 dell’Etna utilizzando dati ASTER e profili atmosferici,” Degree Thesis, Univ. Modena and Reggio Emilia (2005). Journal of Applied Remote Sensing, Vol. 2, 023550 (2008) Page 20en
dc.description.obiettivoSpecifico1.10. TTC - Telerilevamentoen
dc.description.journalTypeN/A or not JCRen
dc.description.fulltextreserveden
dc.contributor.authorCorradini, S.en
dc.contributor.authorSpinetti, C.en
dc.contributor.authorCarboni, E.en
dc.contributor.authorTirelli, C.en
dc.contributor.authorBuongiorno, M. F.en
dc.contributor.authorPugnaghi, S.en
dc.contributor.authorGangale, G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentAtmospheric Oceanic and Planetary Physics, Clarendon Laboratory, University of Oxforden
dc.contributor.departmentUniversity of Rome - La Sapienzaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentUniversità di Modena e Reggio Emiliaen
dc.contributor.departmentUniversità di Modena e Reggio Emiliaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptUniversità La Sapienza Roma-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptUniversità di Modena e Reggio Emilia-
crisitem.author.deptUniversità di Modena e Reggio Emilia-
crisitem.author.orcid0000-0001-9432-3246-
crisitem.author.orcid0000-0002-1861-5666-
crisitem.author.orcid0000-0002-0236-7856-
crisitem.author.orcid0000-0002-6095-6974-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent01. Atmosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Corradini_JARS-Vol2-023550.pdf2.86 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

58
checked on Feb 7, 2021

Page view(s) 10

465
checked on Apr 17, 2024

Download(s)

33
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric