Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4719
DC FieldValueLanguage
dc.contributor.authorallUeda, T.; Division of Earth and Planetary Sciences, Graduate School of Science, Kyoto University, Japanen
dc.contributor.authorallObata, M.; Division of Earth and Planetary Sciences, Graduate School of Science, Kyoto University, Japanen
dc.contributor.authorallDi Toro, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallKanagawa, K.; Department of Earth Sciences, Chiba University, Japanen
dc.contributor.authorallOzawa, K.; Department of Earth and Planetary Sciences, Graduate School of Science, University of Tokyo, Japanen
dc.date.accessioned2008-12-15T07:38:19Zen
dc.date.available2008-12-15T07:38:19Zen
dc.date.issued2008en
dc.identifier.urihttp://hdl.handle.net/2122/4719en
dc.description.abstractWe report a new type of ultramafi c pseudotachylyte that forms a fault- and injection-vein network hosted in the mantle-derived Balmuccia peridotite (Italy). In the fault vein the pseudotachylyte is now deformed and recrystallized into a spinel-lherzolite facies ultramylonite, made of a fi ne (<2 μm) aggregate of olivine, orthopyroxene, clinopyroxene, and spinel, with small amounts of amphibole and dolomite. Electron backscattered diffraction study of the ultramylonite shows a clear crystallographic preferred orientation (CPO) of olivine. The fault vein pseudotachylyte overprints a spinel-lherzolite facies amphibole-bearing mylonite, indicating that shear localization accompanying chemical reaction had taken place in the peridotite before seismic slip produced frictional melting. The occurrence of amphibole in the host mylonite and that of dolomite as well as amphibole in the matrices of ultramylonite and pseudotachylyte may indicate that fl uid was present and had evolved in its composition from H2O-rich to CO2-rich during ductile deformation with metamorphic reactions, which may account for the observed rheological transition from ductile to brittle behavior. The spinel-lherzolite facies assemblage in mylonites, P-T estimations from pyroxene geothermometry and carbonate reactions, and the type of olivine CPO in deformed pseudotachylyte indicate that both the preseismic and the postseismic ductile deformations occurred at ~800 °C and 0.7–1.1 GPa.en
dc.description.sponsorshipF. Seifert and Bayerisches Geoinstitut (University of Beyreuth); Japan Society for the Promotion of Science grant 17340159; Progetti di RilevanteInteresse Nazionale grant 2005044945 and a Progetti di Eccellenza Fondazione Cassa di Risparmio di Padova e Rovigo (CARIPARO) grant.en
dc.language.isoEnglishen
dc.publisher.nameGSAen
dc.relation.ispartofGeologyen
dc.relation.ispartofseries8/36(2008)en
dc.relation.isversionofhttp://www.gsajournals.org/archive/0091-7613/36/8/pdf/i0091-7613-36-8-607.pdfen
dc.subjectpseudotachylyteen
dc.subjectperidotiteen
dc.titleMantle earthquakes frozen in mylonitized ultramafic pseudotachylytes of spinel-lherzolite facies.en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber607-610en
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processesen
dc.identifier.doi10.1130/G24739A.1en
dc.relation.referencesAndersen, T.B., and Austrheim, H., 2006, Fossil earthquakes recorded by pseudotachylytes in mantle peridotite from the Alpine subduction complex of Corsica: Earth and Planetary Science Letters, v. 242, p. 58–72, doi: 10.1016/ j.epsl.2005.11.058. Brey, G., Brice, W.R., Ellis, D.J., Green, D.H., Harris , K.L., and Ryabchikov, I.D., 1983, Pyroxenecarbonate reactions in the upper mantle: Earth and Planetary Science Letters, v. 62, p. 63–74, doi: 10.1016/0012-821X(83)90071-7. Bridgman, P.W., 1936, Shearing phenomena at high pressure of possible importance for geology: Journal of Geology, v. 44, p. 653–669. Carter, N.L., and Avé Lallemant, H.G., 1970, High temperature fl ow of dunite and peridotite: Geological Society of America Bulletin, v. 81, p. 2181–2202, doi: 10.1130/0016-7606(1970) 81[2181:HTFODA]2.0.CO;2. Di Toro, G., Nielsen, S., and Pennacchioni, G., 2005, Earthquake rupture dynamics frozen in exhumed ancient faults: Nature, v. 436, p. 1009–1012, doi: 10.1038/nature03910. Gasparik, T., 1984, Two-pyroxene thermobarometry with new experimental data in the system CaO-MgO-Al2O3-SiO2: Contributions to Mineralogy and Petrology, v. 87, p. 87–97, doi: 10.1007/BF00371405. Griggs, D., and Handin, J., 1960, Observations on fracture and a hypothesis of earthquakes: Geological Society of America Memoir 79, p. 343–373. Handy, M.R., and Stünitz, H., 2002, Strain localization by fracturing and reaction weakening—A mechanism for initiating exhumation of subcontinental mantle beneath rifted margins, in de Meer, S., et al., eds., Deformation mechanisms, rheology and tectonics: Current status and future perspectives: The Geological Society of London Special Publication 200, p. 387–407. Handy, M.R., Franz, L., Heller, F., Janott, B., and Zurbriggen, R., 1999, Multistage accretion and exhumation of the continental crust (Ivrea crustal section, Italy and Switzerland): Tectonics, v. 18, p. 1154–1177, doi: 10.1029/1999TC900034. Hobbs, B.E., Ord, A., and Teyssier, C., 1986, Earthquakes in the ductile regime?: Pure and Applied Geophysics, v. 124, p. 309–335, doi: 10.1007/ BF00875730. Jin, D., Karato, S., and Obata, M., 1998, Mechanisms of shear localization in the continental lithosphere: Inference from the deformation microstructures of peridotites from the Ivrea zone, northwestern Italy: Journal of Structural Geology, v. 20, p. 195–209, doi: 10.1016/ S0191-8141(97)00059-X. Jung, H., and Karato, S., 2001, Water-induced fabric transitions in olivine: Science, v. 293, p. 1460–1463, doi: 10.1126/science.1062235. Kanamori, H., Anderson, D.L., and Heaton, T.H., 1998, Frictional melting during the rupture of the 1994 Bolivian earthquake: Science, v. 279, p. 839–842, doi: 10.1126/science.279.5352.839. Karato, S., Paterson, M.S., and Fitz Gerald, J.D., 1986, Rheology of synthetic olivine aggregates— Infl uence of grain size and water: Journal of Geophysical Research, v. 91, p. 8151–8176, doi: 10.1029/JB091iB08p08151. Kelemen, P.B., and Hirth, G., 2007, A periodic shearheating mechanism for intermediate-depth earthquakes in the mantle: Nature, v. 446, p. 787–790, doi: 10.1038/nature05717. Obata, M., and Karato, S., 1995, Ultramafi c pseudotachylite from the Balmuccia peridotite, Ivrea-Verbano zone, northern Italy: Tectonophysics, v. 242, p. 313–328, doi: 10.1016/0040-1951(94)00228-2. Passchier, C.W., 1982, Pseudotachylyte and the development of ultramylonite bands in the Saint- Barthelémy Massif, French Pyrenees: Journal of Structural Geology, v. 4, p. 69–79, doi: 10.1016/0191-8141(82)90008-6. Riley, G.N., Jr., and Kohlstedt, D.L., 1990, Melt migration in a silicate liquid-olivine system: An experi mental test of compaction theory: Geophysical Research Letters, v. 17, no. 12, p. 2101–2104, doi: 10.1029/GL017i012p02101. Rivalenti, G., Garuti, G., Rossi, A., Siena, F., and Sinigoi, S., 1981, Existence of different peridotite types and of a layered igneous complex in the Ivrea zone of the western Alps: Journal of Petrology, v. 22, p. 127–153. Schmid, R., and Wood, B.J., 1976, Phase relationships in granulitic metapelites from the Ivrea- Verbano zone (northern Italy): Contributions to Mineralogy and Petrology, v. 54, p. 255–279, doi: 10.1007/BF00389407. Scholz, C.H., 2002, The mechanics of earthquakes and faulting (2nd edition): Cambridge, UK, Cambridge University Press, 471 p. Shervais, J.W., 1979, Thermal emplacement model for the alpine lherzolite massif at Balmuccia, Italy: Journal of Petrology, v. 20, p. 795–820. Sibson, R.H., 1975, Generation of pseudotachylyte by ancient seismic faulting: Geophysical Journal of the Royal Astronomical Society, v. 43, p. 775–794. Sibson, R.H., 1980, Transient discontinuities in ductile shear zones: Journal of Structural Geology, v. 2, p. 165–171. Sinigoi, S., Comin-Chiaramonti, P., Demarchi, G., and Siena, F., 1983, Differentiation of partial melts in the mantle: Evidence from the Balmuccia peridotite, Italy: Contributions to Mineralogy and Petrology, v. 82, p. 351–359, doi: 10.1007/BF00399712. Taylor, W.R., 1988, An experimental test of some geothermometer and geobarometer formulations: Neues Jahrbuch für Mineralogie, v. 172, p. 381–408. Watson, E.B., and Brenan, J.M., 1987, Fluids in the lithosphere, 1: Experimentally determined wetting characteristics of CO2-H2O fl uids and their implications for fl uid transport, host-rock physical properties, and fl uid inclusion formation: Earth and Planetary Science Letters, v. 85, p. 497–515, doi: 10.1016/0012-821X(87)90144-0. White, J.C., 1996, Transient discontinuities revisited: Pseudotachylyte, plastic instability and the infl uence of low pore fl uid pressure on deformation processes in the mid-crust: Journal of Structural Geology, v. 18, p. 1471–1486. White, J.C., 2004, Instability and localization of deformation in lower crust granulites, Minas fault zone, Nova Scotia, Canada: The Geological Society of London Special Publication 224, p. 25–37, doi: 10.1144/GSL. SP.2004.224.01.03. White, S.H., and Knipe, R.J., 1978, Transformationand reaction-enhanced ductility in rocks: The Geological Society of London Journal, v. 135, p. 513–516.en
dc.description.obiettivoSpecifico2.3. TTC - Laboratori di chimica e fisica delle rocceen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorUeda, T.en
dc.contributor.authorObata, M.en
dc.contributor.authorDi Toro, G.en
dc.contributor.authorKanagawa, K.en
dc.contributor.authorOzawa, K.en
dc.contributor.departmentDivision of Earth and Planetary Sciences, Graduate School of Science, Kyoto University, Japanen
dc.contributor.departmentDivision of Earth and Planetary Sciences, Graduate School of Science, Kyoto University, Japanen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentDepartment of Earth Sciences, Chiba University, Japanen
dc.contributor.departmentDepartment of Earth and Planetary Sciences, Graduate School of Science, University of Tokyo, Japanen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDivision of Earth and Planetary Sciences, Graduate School of Science, Kyoto University, Japan-
crisitem.author.deptDivision of Earth and Planetary Sciences, Graduate School of Science, Kyoto University, Japan-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptDepartment of Earth Sciences, Chiba University, Japan-
crisitem.author.deptDepartment of Earth and Planetary Sciences, Graduate School of Science, University of Tokyo, Japan-
crisitem.author.orcid0000-0002-6618-3474-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Ueda_et_al_Geology.pdfaccepted paper58.17 kBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

53
checked on Feb 10, 2021

Page view(s)

104
checked on Mar 27, 2024

Download(s) 10

971
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric