Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4602
DC FieldValueLanguage
dc.contributor.authorallMastrolorenzo, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallPappalardo, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallTroise, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallPanizza, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallDe Natale, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2008-12-11T11:05:24Zen
dc.date.available2008-12-11T11:05:24Zen
dc.date.issued2008en
dc.identifier.urihttp://hdl.handle.net/2122/4602en
dc.description.abstractTephra fall is a relevant hazard of Campi Flegrei caldera (Southern Italy), due to the high vulnerability of Naples metropolitan area to such an event. Here, tephra derive from magmatic as well as phreatomagmatic activity. On the basis of both new and literature data on known, past eruptions (Volcanic Explosivity Index (VEI), grain size parameters, velocity at the vent, column heights and erupted mass), and factors controlling tephra dispersion (wind velocity and direction), 2D numerical simulations of fallout dispersion and deposition have been performed for a large number of case events. A bayesian inversion has been applied to retrieve the best values of critical parameters (e.g., vertical mass distribution, diffusion coefficients, velocity at the vent), not directly inferable by volcanological study. Simulations are run in parallel on multiple processors to allow a fully probabilistic analysis, on a very large catalogue preserving the statistical proprieties of past eruptive history. Using simulation results, hazard maps have been computed for different scenarios: upper limit scenario (worst-expected scenario), eruption-range scenario, and whole-eruption scenario. Results indicate that although high hazard characterizes the Campi Flegrei caldera, the territory to the east of the caldera center, including the whole district of Naples, is exposed to high hazard values due to the dominant westerly winds. Consistently with the stratigraphic evidence of nature of past eruptions, our numerical simulations reveal that even in the case of a subplinian eruption (VEI = 3), Naples is exposed to tephra fall thicknesses of some decimeters, thereby exceeding the critical limit for roof collapse. Because of the total number of people living in Campi Flegrei and the city of Naples (ca. two million of inhabitants), the tephra fallout risk related to a plinian eruption of Campi Flegrei largely matches or exceeds the risk related to a similar eruption at Vesuvius.en
dc.language.isoEnglishen
dc.publisher.nameA.G.U.en
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseries/113 (2008)en
dc.subjectthe Neapolitan areaen
dc.subjectCampi Flegrei eruptionsen
dc.titleProbabilistic tephra hazard maps for the Neapolitan area: Quantitative volcanological study of Campi Flegrei eruptionsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB07203en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risken
dc.identifier.doi10.1029/2007JB004954en
dc.relation.referencesBonadonna, C., G. G. J. Ernst, and R. S. J. Sparks (1998), Thickness variations and volume estimates of tephra fall deposits: The importance of particle Reynolds number, J. Volcanol. Geotherm. Res., 81(3–4), 173– 187. Bonadonna, C., G. Macedonio, and R. S. J. Sparks (2002), Numerical modeling of tephra fall-out associated with dome collapses and vulcanian explosions: Application to hazard assessment on Montserrat, Geol. Soc. London Mem., 21, 517– 537. Bonadonna, C., C. B. Connor, B. F. Houghton, L. Connor, M. Byrne, A. Laing, and T. K. Hincks (2005), Probabilistic modeling tephra dispersal: Hazard assessment of a multiphase rhyolitic eruption at Tarawera, New Zealand, J. Geophys. Res., 110, B03203, doi:10.1029/2003JB002896. Bursik, M. I., R. S. J. Sparks, J. S. Gilbert, and S. N. Carey (1992), Sedimentation of tephra by volcanic plumes. Part I: Theory and its comparison with a study of the Fogo A Plinian deposit, Sao Miguel (Azores), Bull. Volcanol., 54, 329– 344. Carey, S., and R. S. J. Sparks (1986), Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns, Bull. Volcanol., 48, 109– 125. Cherubini, A., S. M. Petrazzuoli, and S. Zuccaro (2001), Vulnerabilita` sismica dell’area Vesuviana, p. 190, CNR-Gruppo Nazionale per la Difesa dai Terremoti, Roma, ISBN 88-88151-04-4. Cornell, W., S. Carey, and H. Sigurdsson (1983), Computer simulation of transport and deposition of the Campanian Y-5 ash, J. Volcanol. Geotherm. Res., 17, 89– 109. Connor, L. J., and C. B. Connor (2006), Inversion is the key to dispersion: Understanding eruption dynamics by inverting tephra fallout, in Statistics in Volcanology, edited by H. M. Mader et al., p. 296, Geol. Soc., London. Connor, B. C., B. E. Hill, B. Winfrey, N. M. Franklin, and P. C. La Femina (2001), Estimation of volcanic hazards from tephra fallout, Nat. Hazards, 2, 33– 42. D’Antonio, M., L. Civetta, G. Orsi, L. Pappalardo, M. Piochi, A. Carandente, S. de Vita, M. Di Vito, and R. Isaia (1999), The present state of the magmatic system of the Campi Flegrei caldera based on a reconstruction of its behavior in the past 12 ka, J. Volcanol. Geotherm. Res., 91, 247– 268. B07203 MASTROLORENZO ET AL.: TEPHRA FALL-OUT HAZARD AT CAMPI FLEGREI 13 of 14 B07203 Deino, A., G. Curtis, and M. Rosi (1992), 40Ar/39Ar dating of the Campanian Ignimbrite, Campanian Region, Italy, IGC Kyoto, Japan 24 Aug.– 3 Sept., Abstracts, 3, 633. Deino, A. L., G. Orsi, S. de Vita, and M. Piochi (2004), The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera - Italy) assessed by 40Ar/39Ar dating method, J. Volcanol. Geotherm. Res., 133, 157– 170. De’Gennaro, M., A. Incoronato, G. Mastrolorenzo, M. R. Adabbo, and G. Spina (1999), Depositional mechanisms and alteration processes in different types of pyroclastic deposits in Campi Flegrei volcanic field (Southern Italy), J. Volcanol. Geotherm. Res., 82, 113– 137. De Vivo, B., G. Rolandi, P. B. Gans, A. Calvert,W. A. Bohrson, F. J. Spera, and H. E. Belkin (2001), New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy), Mineral Petrol., 73, 47– 65. de Vita, S., et al. (1999), The Agnano-Monte Spina eruption (4100 years b.p.) in the restless Campi Flegrei caldera (Italy), J. Volcanol. Geotherm. Res., 91, 269–301. Di Girolamo, P., M. R. Ghiara, L. Lirer, R. Munno, G. Rolandi, and D. Stanzione (1984), Vulcanologia e Petrologia dei Campi Flegrei, Boll. Soc. Geol. It., 103, 349– 413. Di Vito, M., L. Lirer, G. Mastrolorenzo, and G. Rolandi (1987), The 1538 Monte Nuovo eruption (Campi Flegrei Italy), Bull. Volcanol., 49, 608–615. Di Vito, M. A., R. Isaia, G. Orsi, J. Southon, M. D’Antonio, S. de Vita, L. Pappalardo, and M. Piochi (1999), Volcanic and deformation history of the Campi Flegrei caldera in the past 12 ka, J. Volcanol. Geotherm. Res., 91, 221– 246. Dvorak, J. J., and G. Berrino (1991), Recent ground movement and seismicity activity in Campi Flegrei, Southern Italy: Episodic growth of a resurgent dome, J. Geophys. Res., 96(B2), 2309– 2323. Dvorak, J. J., and G. Mastrolorenzo (1991), The mechanism of recent vertical crustal movements in Campi Flegrei caldera, Southern Italy, Geol. Soc. Am., Special Paper, 263, 1 – 48. Frielander, S. K., (2000), Smoke, Dust and Haze: Fundamentals of Aerosol Behaviour, John Wiley, New York. Gaeta, F. S., G. De Natale, F. Peluso, G. Mastrolorenzo, D. Castagnolo, C. Troise, F. Pingue, D. G. Mita, and S. Rossano (1998), Genesis and evolution of unrest episodes at Campi Flegrei caldera: The role of the thermal fluid-dynamical processes in the geothermal system, J. Geophys. Res., 103(B9), 20,921– 20,933. Hurst, A.W., and R. Turner (1999), Performance of the program ASHFALL for forecasting ash-fall during the 1995 and 1996 eruptions of Ruhapeu Volcano, N. Z., J. Geol. Geophys., 42(4), 615–622. Isaia, R., M. D ´ Antonio, F. Dell´Erba, M. Di Vito, and G. Orsi (2004), The Astroni volcano: The only example of closely spaced eruptions in the same vent area during the recent history of the Campi Flegrei caldera (Italy), J. Volcanol. Geotherm. Res., 133, 171– 192. Lirer, L., G. Mastrolorenzo, and G. Rolandi (1987), Un’eruzione pliniana nell’attivita` recente dei Campi Flegrei, Boll. Soc. Geol. It., 106, 461–473. Mastrolorenzo, G. (1994), Averno tuff ring in Campi Flegrei (south Italy), Bull. Volcanol., 56, 561– 572. Mastrolorenzo, G., L. Brachi, and A. Canzanella (2001), Vesicularity of various types of pyroclastic deposits of Campi Flegrei volcanic field: Evidence of analogies in magma rise and vesiculation mechanisms, J. Volcanol. Geotherm. Res., 109, 41– 53. Menke, W., (1984), Geophysical Data Analysis: Discrete Inverse Theory, Elsevier, New York. Orsi, G., S. de Vita, and M. A. Di Vito (1996), The restless resurgent Campi Flegrei nested caldera (Italy): Constraints on its evolution and configuration, J. Volcanol. Geotherm. Res., 74, 179– 214. Pappalardo, L., L. Civetta, M. D’Antonio, A. L. Deino, M. A. Di Vito, G. Orsi, A. Carandente, S. de Vita, R. Isaia, and M. Piochi (1999), Chemical and isotopical evolution of the Phlegraean magmatic system before the Campanian Ignimbrite (37 ka) and the Neapolitan Yellow Tuff (12 ka) eruptions, J. Volcanol. Geotherm Res., 91, 141– 166. Perrotta, A., and C. Scarpati (2003), Volume partition between the plinian and co-ignimbrite air fall deposits of the Campanian Ignimbrite eruption, Mineral. Petrol., 79(1), 67– 78. Piochi, M., G. Mastrolorenzo, and L. Pappalardo (2005), Magma ascent and eruptive processes from textural and compositional features of Monte Nuovo pyroclastic products, Bull. Volcanol., 67(7), 663– 678. Pyle, D. M. (1989), The thickness, volume and grainsize of tephra fall deposits, Bull. Volcanol., 51, 1 –15. Rosi, M., and A. Sbrana (1987), Phlegraean Fields, Quaderni de‘‘La Ricerca Scientifica’’, pp. 114– 175, 114 CNR, Roma. Rosi, M., L. Vezzoli, A. Castelmenzano, and G. Grieco (1999), Plinian pumice fall deposit of the Campanian Ignimbrite eruption (Phlegrean Fields, Italy), J. Volcanol. Geotherm. Res., 91, 179–198. Rossano, S., G. Mastrolorenzo, and G. De Natale (1998), Computer simulations of pyroclastic flows on Somma-Vesuvius volcano, J. Volcanol. Geotherm. Res., 82, 113– 137. Rossano, S., G. Mastrolorenzo, and G. De Natale (2004), Numerical simulation of pyroclastic density currents on Campi Flegrei topography: A tool for statistical hazard estimation, J. Volcanol. Geotherm. Res., 132, 1 –14. Spence, R., I. Kelman, P. Baxter, G. Zuccaro, and S. Petrazzuoli (2005), Residential building and occupant vulnerability to Tephra Fall, Nat. Hazards Earth Syst. Sci., 5, 477– 494. Suzuki, T. (1983), A theoretical Model for Dispersion of Tephra. Arc Volcanism: Physics and Tectonics, edited by D. Shimozuru and I. Yokoyama, pp. 95– 113, Terra Sci. (TERRAPUB), Tokyo. U.S. Standard Atmosphere (1976), U. S. Government Printing Office, Washington, D. C. Wohletz, K., G. Orsi, and S. de Vita (1995), Eruptive mechanisms of the Neapolitan Yellow Tuff interpreted from stratigraphic, chemical, and granulometric data, J. Volcanol. Geother. Res., 67, 263– 290. Woods, A. W. (1988), The fluid dynamic and thermodynamics of eruption columns, Bull. Volcanol., 50, 169– 193.en
dc.description.obiettivoSpecifico4.3. TTC - Scenari di pericolosità vulcanicaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorMastrolorenzo, G.en
dc.contributor.authorPappalardo, L.en
dc.contributor.authorTroise, C.en
dc.contributor.authorPanizza, A.en
dc.contributor.authorDe Natale, G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0002-2578-541X-
crisitem.author.orcid0000-0002-9187-252X-
crisitem.author.orcid0000-0001-6555-5777-
crisitem.author.orcid0000-0001-8391-2846-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
MasPap-08.pdf1.52 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

13
checked on Feb 7, 2021

Page view(s) 50

356
checked on Apr 24, 2024

Download(s)

32
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric