Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4571
DC FieldValueLanguage
dc.contributor.authorallD'Amico, V.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Milano-Pavia, Milano, Italiaen
dc.contributor.authorallAlbarello, D.; Dipartimento di Scienze della Terra, Università di Sienaen
dc.date.accessioned2008-12-10T15:20:45Zen
dc.date.available2008-12-10T15:20:45Zen
dc.date.issued2008-09en
dc.identifier.urihttp://hdl.handle.net/2122/4571en
dc.description.abstractThe evaluation of seismic hazard over wide territories is a basic tool for planning activities aimed at earthquake damage mitigation. This is commonly performed through probabilistic approaches based on the statistical analysis of past seismicity. Among these, due to its wide application worldwide, the Cornell-McGuire approach (Cornell 1968; McGuire 1978) has become a kind of “standard” methodology for probabilistic seismic hazard assessment (PSHA). In Italy, several national seismic hazard maps were produced in recent years (Slejko et al. 1998; Albarello et al. 2000; MPS Working Group 2004) by following this procedure as implemented by Bender and Perkins (1987). Yet despite its widespread application, this standard methodology presents severe drawbacks due to its strong sensitivity to some ill-defined aspects, such as geometry of seismic sources, attenuation of ground motion with distance from the source, completeness of available seismic catalogs, etc. Moreover, this kind of approach does not allow the full exploitation of a large amount of documentary data available at the site about the seismic effects of past earthquakes (Albarello and Mucciarelli 2003). Another drawback is that the standard approach was developed with the assumption that the seismicity database used to feed the computational model is constituted by instrumental data (magnitude, epicentral locations, etc.). However, in many countries (first and foremost, Italy) the bulk of the seismic database is constituted by macroseismic data, and thus the application of the standard method requires a “forcing” of macroseismic information into a para-instrumental format. But macroseismic information is not isomorphic to instrumental data since intensity values are discrete, ordinal, and range-limited. This implies that, in principle, mathematical formalizations suitable to instrumental information cannot be used to manage macroseismic data (see, e.g., Pasolini et al. 2008a, 2008b). To overcome some of these difficulties and to better exploit available information, probabilistic hazard evaluations based on observed intensity data were performed in Europe (Monachesi et al. 1994; Papoulia and Slejko 1997; Azzaro et al. 1999; Albarello et al. 2002) and Japan (Bozkurt et al. 2007) using alternative numerical procedures. An apparent limitation of these studies is the fact that PSH estimates are provided in terms of intensity, and this conflicts with the fact that ground acceleration still remains the traditional output of PSHA devoted to seismic design. However, a new interest has recently grown around macroseismic intensity. In fact, when damage scenarios and post-earthquake emergency planning are of concern, hazard assessment in terms of intensity as ground-shaking measure may be more suitable than conventional estimates based on instrumental parameters (PGA, etc.). A further possible advantage of these kinds of approaches is that they provide hazard evaluations completely independent from the standard ones and more directly linked to empirical observations (local seismic history). Thus, they could represent a useful benchmark for a direct assessment of reliability of traditional PSH estimates (Mucciarelli et al. 2000, 2006, 2008; Bozkurt et al. 2007). In this paper we present the computer program SASHA (Site Approach to Seismic Hazard Assessment), which implements the intensity-based PSHA procedure originally proposed by Magri et al. (1994) and then improved by Albarello and Mucciarelli (2002). It relies on the analysis of the site seismic history, i.e., the dataset of seismic effects (macroseismic intensities) documented during past earthquakes at a given locality. This methodology (hereafter, site approach) has been specifically developed to handle macroseismic data, and thus both the peculiar nature of intensity values (discrete, ordinal, range-limited) and relevant uncertainty (ill-defined intensity values, completeness of site seismic history, etc.) are taken into account by a coherent statistical approach that does not require any assumption about earthquake recurrence model and seismic source geometry. Furthermore, no aftershock removal is required in advance and epicentral data are only considered to integrate (when necessary) felt data at the site. Several PSHA studies have been performed in the last decade in Italy using different versions of the site approach (Mucciarelli et al. 2000; Albarello et al. 2002; D’Amico and Albarello 2003; Albarello, Azzaro et al. 2007; Azzaro et al. 2008). SASHA’s theoretical background is briefly outlined in the next section of the paper. Then, we describe the most important features of SASHA along with a sample application to the Italian area.en
dc.language.isoEnglishen
dc.publisher.nameSeismological Society of Americaen
dc.relation.ispartofSeismological Research Lettersen
dc.relation.ispartofseries5/79(2008)en
dc.subjectcomputational codeen
dc.subjectprobabilistic seismic hazard assessmenten
dc.subjectintensity dataen
dc.titleSASHA: A Computer Program to Assess Seismic Hazard from Intensity Dataen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber663-671en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.11. Seismic risken
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementationen
dc.identifier.doi10.1785/gssrl.79.5.663en
dc.relation.referencesAlbarello, D., R. Azzaro, M. S. Barbano, S. D’Amico, V. D’Amico, R. Rotondi, T. Tuvè, and G. Zonno (2007). Valutazioni di pericolosità sismica in termini di intensità macrosismica utilizzando metodi di sito. INGV-DPC Project S1, Deliverable D9; http://esse1.mi.ingv.it/d9.html . Albarello, D., V. Bosi, F. Bramerini, A. Lucantoni, G. Naso, L. Peruzza, A. Rebez, F. Sabetta, and D. Slejko (2000). Carte di pericolosità sismica del territorio nazionale. Quaderni di Geofisica 12, 1–8. Albarello, D., F. Bramerini, V. D’Amico, A. Lucantoni, and G. Naso (2002). Italian intensity hazard maps: A comparison of results from different methodologies. Bollettino di Geofisica Teorica e Applicata 43, 249–262. Albarello, D., R. Camassi, and A. Rebez (2001). Detection of space and time heterogeneity in the completeness of a seismic catalog by a statistical approach: An application to the Italian area. Bulletin of the Seismological Society of America 91, 1,694–1,703. Albarello, D., and V. D’Amico (2005). Validation of intensity attenuation relationships. Bulletin of the Seismological Society of America 95, 719–724. Albarello, D., V. D’Amico, P. Gasperini, F. Pettenati, R. Rotondi, and G. Zonno (2007). Nuova formulazione delle procedure per la stima dell’intensità macrosismica da dati epicentrali o da risentimenti in zone vicine. INGV-DPC Project S1, Deliverable D10; http://esse1.mi.ingv.it/d10.html . Albarello, D., and M. Mucciarelli (2002). Seismic hazard estimates using ill-defined macroseismic data at site. Pure and Applied Geophysics 159, 1,289–1,304. Albarello, D., and M. Mucciarelli (2003). Seismic hazard assessment and site effects evaluation at regional scale. In Earthquake Science and Seismic Risk Reduction, ed. F. Mulargia and R. J. Geller, 148–158. NATO Science Series IV, vol. 32. Boston: Kluwer Academic Publishers. Azzaro, R., M. S. Barbano, S. D’Amico, T. Tuvè, D. Albarello, and V. D’Amico (2008). First studies of probabilistic seismic hazard assessment in the volcanic region of Mt. Etna (southern Italy) by means of macroseismic intensities. Bollettino di Geofisica Teorica e Applicata 49, 77–91. Azzaro, R., M. S. Barbano, A. Moroni, M. Mucciarelli, and M. Stucchi (1999). The seismic history of Catania. Journal of Seismology 3, 235–252. Bender, B., and D. M. Perkins (1987). SEISRISK III: A Computer Program for Seismic Hazard Estimation. USGS Bulletin 1772, 48 pps. Bozkurt, S. B., R. S. Stein, and S. Toda (2007). Forecasting probabilistic seismic shaking for greater Tokyo from 400 years of intensity observations. Earthquake Spectra 23, 525–546. Cornell, C.A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America 58, 1,583–1,606. CPTI Working Group (2004). Catalogo Parametrico dei Terremoti Italiani. Versione 2004 (CPTI04). INGV, Bologna; http://emidius.mi.ingv.it/CPTI04 . D’Amico, V., and D. Albarello (2003). The role of data processing and uncertainty management in seismic hazard evaluations: Insights from estimates in the Garfagnana-Lunigiana area (northern Italy). Natural Hazards 29, 77–95. D’Amico, V., D. Albarello, and M. Mucciarelli (2002). Validation through HVSR measurements of a method for the quick detection of site amplification from intensity data: An application to a seismic area in northern Italy. Soil Dynamics and Earthquake Engineering 22, 475–483. Faccioli, E., and C. Cauzzi (2006). Macroseismic intensities for seismic scenarios estimated from instrumentally based correlations. Proceedings, First European Conference on Earthquake Engineering and Seismology, paper number 569, 3–8 September 2006. Geneva Switzerland. Published on CD. Gallipoli, M. R., D. Albarello, M. Mucciarelli, V. Lapenna, M. Schiattarella, and G. Calvano (2002). Hints about site amplification effects comparing macroseismic hazard estimate with microtremor measurements: The Agri Valley (Italy) example. Journal of Earthquake Engineering 7, 51–72. Magri, L., M. Mucciarelli, and D. Albarello (1994). Estimates of site seismicity rates using ill-defined macroseismic data. Pure and Applied Geophysics 143, 617–632. McGuire, R. K. (1978). FRISK: Computer Program for Seismic Risk Analysis Using Faults as Earthquake Sources. USGS Open File Report 78-1007. Monachesi, G., L. Peruzza, D. Slejko, and M. Stucchi (1994). Seismic hazard assessment using intensity point data. Soil Dynamics and Earthquake Engineering 13, 219–226. MPS Working Group (2004). Redazione della mappa di pericolosità sismica prevista dall’Ordinanza PCM 3274 del 20 marzo 2003. Rapporto conclusivo per il Dipartimento della Protezione Civile, INGV, Milano-Roma, April 2004, 65 pps. + 5 appendices; http://zonesismiche.mi.ingv.it . Mucciarelli, M., D. Albarello, and V. D’Amico (2006). Comparison between the Italian seismic hazard map (PRSTN04) and alternative PSHA estimates. Proceedings, First European Conference on Earthquake Engineering and Seismology, paper number 595. Mucciarelli, M., D. Albarello, and V. D’Amico (2008). Comparison of probabilistic seismic hazard estimates in Italy. Submitted to the Bulletin of the Seismological Society of America. Mucciarelli, M., L. Peruzza, and P. Caroli (2000). Tuning of seismic hazard estimates by means of observed site intensities. Journal of Earthquake Engineering 4, 141–159. Papoulia, J., and D. Slejko (1997). Seismic hazard assessment in the Ionian islands based on observed macroseismic intensities. Natural Hazards 14, 179–187. Pasolini, C., P. Gasperini, D. Albarello, B. Lolli, and V. D’Amico (2008a). The attenuation of seismic intensity in Italy, part I: Theoretical and empirical backgrounds. Bulletin of the Seismological Society of America 98, 2, 682–691. Pasolini C., D. Albarello, P. Gasperini, V. D’Amico, and B. Lolli (2008b). The attenuation of seismic intensity in Italy, part II: Modeling and validation. Bulletin of the Seismological Society of America 98 (2), 692–708. Rock, N. M. S. (1988). Numerical Geology. Berlin: Springer-Verlag, 427 pps. Slejko, D., L. Peruzza, and A. Rebez (1998). Seismic hazard maps of Italy. Annali di Geofisica 41, 183–214. Stucchi, M., R. Camassi, A. Rovida, M. Locati, E. Ercolani, C. Meletti, P. Migliavacca, F. Bernardini, and R. Azzaro (2007). DBMI04, il database delle osservazioni macrosismiche dei terremoti italiani utilizzate per la compilazione del catalogo parametrico CPTI04; http://emidius.mi.ingv.it/DBMI04/, Quaderni di Geofisica 49, 1–38.en
dc.description.obiettivoSpecifico4.2. TTC - Scenari e mappe di pericolosità sismicaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorD'Amico, V.en
dc.contributor.authorAlbarello, D.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italiaen
dc.contributor.departmentDipartimento di Scienze della Terra, Università di Sienaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptDipartimento di Scienze Fisiche, della Terra e dell’Ambiente, University of Siena-
crisitem.author.orcid0000-0002-6133-6750-
crisitem.author.orcid0000-0002-9226-4681-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
D'Amico&Albarello_SRL2008.pdfmain article1.67 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

31
checked on Feb 7, 2021

Page view(s) 10

506
checked on Apr 13, 2024

Download(s) 50

135
checked on Apr 13, 2024

Google ScholarTM

Check

Altmetric