Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4525
DC FieldValueLanguage
dc.contributor.authorallCinti, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallPizzino, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallVoltattorni, N.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallQuattrocchi, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallWalia, V.; National Center for Research on Earthquake Engineering (NCREE), National Applied Research Laboratories, Taipei – 106, Taiwanen
dc.date.accessioned2008-12-09T10:22:31Zen
dc.date.available2008-12-09T10:22:31Zen
dc.date.issued2009-
dc.identifier.urihttp://hdl.handle.net/2122/4525en
dc.description.abstractA geochemical survey of thermal waters discharging in the Beas and Parvati valleys (Kulu District, Himachal Pradesh) and in the Sohna town (Gurgaon District, Haryana) was carried out in March 2002. The Beas and Parvati area is characterized by regional seismogenetic fault segments, thrusts and complex folded structures where deep fluid circulation occurs. Thermal springs have temperatures varying between 35 °C and 89 °C. The wide range of surface temperatures and water chemistries suggest the mixing, at various degrees, between a deep saline end-member and a shallow freshwater. Based on the high salinity and the enrichment in halogens (Cl, Br), B and Li, the contribution of the deeper end-member seems to be larger for Kulu and Kalath relative to Manikaran and Kasol. Moreover, a large input of crustal volatiles (He, CO2, H2) is observed for Kulu and Kalath waters. The high dissolved CO2 content and its carbon isotopic composition (13CPDB = -2.87 and -7.49‰ for Kulu and Kalath, respectively) point to a deep, prevalent thermo-metamorphic provenance of the carbon dioxide. A general shallow (i.e. organic) origin of carbon dioxide is suggested for Kasol and Manikaran. The estimated deep temperatures based on the quartz geothermometer provide values ranging between 93-114 °C for all the thermal waters of the Beas and Parvati valleys. The Sohna thermal spring emerges at 42 °C from joints of the seismogenetic Sohna fault. A Na-Cl-HCO3 composition characterizes this water with very low contents of all the selected minor and trace elements. High dissolved helium content points to a prolonged deep circulation, whereas calculated 13C-CO2 (-14.23‰ vs. PDB) is indicative of the general shallow origin of carbon dioxide. The estimated deep temperatures are close to the discharge ones, not providing any valuable information about the temperature of the deeper reservoir.en_US
dc.language.isoEnglishen_US
dc.publisher.nameTerrapub - Terra Scientific Publishing Company, Tokyoen_US
dc.relation.ispartofGeochemical Journalen_US
dc.relation.ispartofseries2/43 (2009)en_US
dc.subjectthermal waters; Himachal Pradesh; carbon isotopes; salinity; dissolved gases.en_US
dc.titleGeochemistry of thermal waters along fault segments in the Beas and Parvati valleys (north-west Himalaya, Himachal Pradesh) and in the Sohna town (Haryana), Indiaen_US
dc.typearticleen_US
dc.description.statusPublisheden_US
dc.description.pagenumber65-76en_US
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of watersen_US
dc.identifier.doi10.2343/geochemj.1.0011en_US
dc.relation.referencesAlam, M.A., Chandrasekharam, D. and Minissale, A. (2004) Geothermal potential of thermal waters of Manikaran, Himachal Pradesh, India. Proc. 8th Workshop on Water Rock Interaction (WRI - 8) 1, 327 – 331. Capaccioni, B., Martini, M., Mangani, F., Giannini, L., Nappi, G. and Prati, F. (1993) Light hydrocarbons in gas-emissions from volcanic areas and geothermal fields. Geochem. J., 27, 7-17. Capasso, G. and Inguaggiato, S. (1998) A simple method for the determination of dissolved gases in natural waters. An application to thermal waters from Vulcano Island. Appl. Geoch. 13(5), 631 – 642. Chakrapani, R.A. (1981) Hydrogeology of Gurgaon District, Haryana. Central Ground Water Board, Ministry of Irrigation, Govt. of India, pp. 43 – 51. Chandrasekharam, D., Alam, M.A. and Minissale, A. (2005) Thermal discharges at Manikharan, Himachal Pradesh, India. Proc. World Geothermal Congress, Antalya, Turkey, 2005. Chandrasekharam, D. and Antu, M.C. (1995) Geochemistry of Tattapani thermal springs, Madhya Pradesh, India – field and experimental investigations. Geothermics 24, 553 – 559. Choubey, V.M., Sharma, K.K. and Ramola, R.C. (1997) Geology of radon occurrence around Jari in Parvati valley, Himachal Pradesh, India. J. Environ. Rad. 34(2), 139 – 147. Darling, W.G., Griesshaber, E., Andrews, J.N., Armannsson, H. and O’Nions, R. (1995) The origin of hydrothermal and other gases in the Kenya Rift Valley. Geoch. Cosm. Acta, 59 (12), 2501 - 2512. Das, G.R.N., Parthasarathy, T.N. and Taneja, P.C. (1979) Uranium mineralization in the pelitic schists in the Kullu Himalaya and its probable origin. Proc. Indian Sci. Acad. 37, 267 – 276. Deines, P. (1970) The carbon and oxygen isotopic composition of carbonates from the Oka Carbonatite complex, Quebec, Canada. Geoch. Cosm. Acta 34, 1199 – 1225. Farooqi, A., Masuda, H., Kusakabe, M., Naseem, M. Ad Firdous N. (2007) Distribution of highly arsenic and fluoride contaminated groundwater from east Punjab, Pakistan, and the controlling role of anthropogenic pollutants in the natural hydrological cycle. Geochem. J., 41, 213 – 234. Favara, R., Grassa, F., Inguaggiato, S., Pecoraino, G. and Capasso, G. (2002) A simple method to determine the 13C content of total dissolved inorganic carbon. Geofis. Intern. 41, 313 – 320. Gansser, A. (1964) The geology of the Himalayas. Interscience, New York, pp. 289. Giggenbach, W.F. (1980) Geothermal gas equilibria. Geoch. Cosm. Acta 44, 2021 - 2032. Giggenbach, W.F. (1988) Geothermal solute equilibria. Derivation of Na–K–Mg–Ca geoindicators. Geoch. Cosm. Acta 52, 2749 – 2765. Giggenbach, W.F., Gonfiantini, R., Jangi, B.L. and Truesdell, A.H. (1983) Isotope and chemical composition of Parbati valley geothermal discharges, North West Himalaya, India. Geothermics 12, 199 – 222. Guha, S.K. (1986) Status of exploration for geothermal resources in India. Geothermics 15, 665 – 675. Gupta G.K. (1996) Hydrogeology and hydrochemistry of Beas valley geothermal system, Kulu district, Himachal Pradesh. Geol. Survey of India 45, 249 - 256. Gupta, M.L., Narain, H. and Safena, V.K. (1975) Geochemistry of thermal waters from various geothermal provinces of India. Proc. of the Grenoble Symp. 119. Gupta, S.N., Arora, Y.K., Mathur, R.K., Iqbaluddin, B.P., Prasad, B., Sahai, T.N. and Sharma, S.B. (1997) The Precambrian geology of the Aravalli region, southern Rajasthan and north eastern Gujarat. Mem. Geol. Surv. India 123, 262. Javoy, M., Pineau, F. and Allegre C.J. (1982) Carbon geodynamic cycle. Nature 300, 171 – 173. Kravtsov, A.I. and Fridman, A.I. (1974) Geology and geochemistry of natural gases in the vicinity of deep faults and earthquake prediction. In: Search for earthquake precursors on forecasting polygons. Nauka, Moskow, 158 - 164. Le Fort, P. (1989) The Himalayan orogenic segment. In: Tectonic evolution in the Tethys region (ed) A.M.C. Sengor (Kluwer Academic Publishers), 289 – 386; Makovsky, Y. and Klemperer, S.L. (1999) Measuring the seismic properties of Tibetan bright spots: Evidence of free aqueous fluids in the Tibetan middle crust. J. Geophys. Res. 104 (10), 795 - 825. Mariner, R.H., Evans, W.C., Presser, T.S. and White L.D. (2003) Excess nitrogen in selected thermal and mineral springs of the Cascade Range in northern California, Oregon and Washington: sedimentary or volcanic in origin? J. Volcanol. Geotherm. Res. 121, 99 - 114. Matsuo, S. (1979) Geochemical studies. Bull. Volcanol. Soc. Japan 24, (4), 51 - 57. Mazor, E. (1991) Applied chemical and isotopic groundwater hydrology. Halsted Press, New York, NY, United States (USA), pp. 274. Minissale, A., Chandrasekharam, D., Vaselli, O., Magro, G, Tassi, F., Pansini, G.L. and Bhramhabut, A. (2003) Geochemistry, geothermics and relationship to active tectonics of Gujarat and Rajasthan thermal discharges, India. J. Volcan. Geoth. Res. 127, 19 – 32. Minissale, A., Vaselli, O., Chandrasekharam, D., Magro, G, Tassi, F. and Casiglia, A. (2000) Origin and evolution of ‘intracratonic’ thermal fluids from central – western peninsular India. Earth Plan. Sci. Lett. 181, 377 – 394. Misra, D.K. and Tewari, V.C. (1988) Tectonics and sedimentation of the rocks between Mandi and Rohtang, Beas valley, Himachal Pradesh, India. Geosci. J. 9(2), 153 – 172. Mook, W.G., Bommerson, J.C. and Staverman, W.H. (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Plan. Sci. Lett. 22 (2), 169 – 176. Neal, C. and Stanger, G. (1983) Hydrogen generation from mantle source rocks in Oman. Earth Plan. Sci. Lett. 66, 315 – 320. Ozsvath, D.L. (2008) Fluoride and environmental health. Rev. Environ. Sci. Biotechnol. doi: 10.1007/s11157-008-9136-9. Pandey, O.P. and Negi, J.G. (1995) Geothermal fields of India: a latest update. Proc. World Geothermal Congress, Florence, Italy, 1995, pp. 163 – 171. Parkhurst, D.L. and Appelo, A.A.J. (1999) User's guide to PHREEQC (version 2) - a computer program for speciation, batch - reaction, one dimensional transport and inverse geochemical modeling. U.S.G.S. Wat. Res. Inv. Report 99-4259, pp. 312. Rao, R.U.M., Rao, G.V. and Hari, N. (1976) Radioactive heat generation and heat flow in the Indian shield. Earth Plan. Sci. Lett. 30, 57 – 64. Ravi Shanker (1988) Heat flow of India and discussion on its geological and economic significance. Ind. Min. 42, 89 – 110. Sharma, K.K. (1998) Geologic and tectonic evolution of the Himalaya before and after the India-Asia collision. Proc. Indian Sci. Acad. 107(4), 265 – 282. Sharma, M.L., Wason, H.R. and Dimri, R. (2003) Seismic zonation of the Delhi region for bedrock ground motion. Pure Appl. Geoph. 160, 2381 – 2398. Sharma, R. and Misra, D. K. (1998) Evolution and resetting of the fluids in Manikaran Quartzite, Himachal Pradesh: applications to burial and recrystallization. J. Geol. Soc. India, 51, 785 - 792. Sharma, V.P. (1977) Geology of Kulu – Rampur belt, Himachal Pradesh. Mem. Geol. Soc. India 106, 235 – 407. Singh, A. (1996) Study of subsurface isotherm, Sohna hot spring area, Gurgaon District, Haryana. Geoth. Energy in India, Geol. Survey of India Special Publication, 45. Sugisaki, R. (1961). Measurement of effective flow velocity of ground water by means of dissolved gases, Am. J. Sci. 259, 144 – 153. Verma, P. and Santoyo, E. (1997) New improved equations for Na/K, Na/Li and SiO2 geothermometers by outlier detection and rejection. J. Volcan. Geoth. Res. 79, 9 – 23. Virk, H.S. and Walia, V. (2000) Radon/Helium monitoring in thermal springs and earthquake prediction. Publ. of the Centre of Advanced Study in Geol. 7, 106 – 107. Walia, V., Bajwa, B.S. and Virk, H.S. (2003) Radon monitoring in groundwater of some areas of Himachal Pradesh and Punjab states, India. J. Environ. Monit. 5, 122 – 125. Walia, V., Quattrocchi, F., Virk, H.S., Yang, T.F., Pizzino, L. and Bajwa, B.S. (2005a) Radon, Helium and Uranium survey in some thermal springs located in NW Himalayas, India: mobilization by tectonic features or by geochemical barriers? J. Environ. Monit. 7, 850 – 855. Walia, V., Virk, H.S., Yang, T. F., Mahajan, S., Walia, M., Bajwa, B.S. (2005b) Earthquake prediction studies using radon as a precursor in N-W Himalayas, India: a case study. Terr. Atmosph. Ocean. Sci., 16(4), 775 – 804. Zies, E. G. (1938) The concentration of the less familiar elements through igneous and related activity. Am. J. Sci. 35A, 385 - 404.en_US
dc.description.obiettivoSpecifico6A. Geochimica per l'ambiente e geologia medicaen_US
dc.description.journalTypeJCR Journalen_US
dc.description.fulltextopenen
dc.contributor.authorCinti, D.-
dc.contributor.authorPizzino, L.-
dc.contributor.authorVoltattorni, N.-
dc.contributor.authorQuattrocchi, F.-
dc.contributor.authorWalia, V.-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen_US
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen_US
dc.contributor.departmentNational Center for Research on Earthquake Engineering (NCREE), National Applied Research Laboratories, Taipei – 106, Taiwanen_US
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptNational Center for Research on Earthquake Engineering (NCREE), National Applied Research Laboratories, Taipei – 106, Taiwan-
crisitem.author.orcid0000-0002-8995-3312-
crisitem.author.orcid0000-0002-1062-2757-
crisitem.author.orcid0000-0002-3940-8383-
crisitem.author.orcid0000-0002-7822-1394-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
GJ008_Final_Version.doc214.5 kBMicrosoft WordView/Open
Show simple item record

WEB OF SCIENCETM
Citations

19
checked on Feb 10, 2021

Page view(s) 50

337
checked on Mar 27, 2024

Download(s) 10

614
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric