Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4515
DC FieldValueLanguage
dc.contributor.authorallRogers, K. L.; Department of Earth and Planetary Sciences, Washington University, St. Louis, Missouri.en
dc.contributor.authorallAmend, J. P.; Department of Earth and Planetary Sciences, Washington University, St. Louis, Missouri.en
dc.contributor.authorallGurrieri, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.date.accessioned2008-12-09T09:44:20Zen
dc.date.available2008-12-09T09:44:20Zen
dc.date.issued2007en
dc.identifier.urihttp://hdl.handle.net/2122/4515en
dc.description.abstractIn June 2003, the geochemical composition of geothermal fluids was determined at 9 sites in the Vulcano hydrothermal system, including sediment seeps, geothermal wells, and submarine vents. Compositional data were combined with standard state reaction properties to determine the overall Gibbs free energy (deltaGr) for 120 potential lithotrophic and heterotrophic reactions. Lithotrophic reactions in the H-O-N-S-C-Fe system were considered, and exergonic reactions yielded up to 120 kJ per mole of electrons transferred. The potential for heterotrophy was characterized by energy yields from the complete oxidation of 6 carboxylic acids—formic, acetic, propanoic, lactic, pyruvic, and succinic—with the following redox pairs:O2/H2O, SO4 2-/H2S, NO3 -/NH4+, S0/H2S, and Fe3O4/Fe2+. Heterotrophic reactions yielded 6–111 kJ/mol e-. Energy yields from both lithotrophic and heterotrophic reactions were highly dependent on the terminal electron acceptor (TEA); reactions with O2 yielded the most energy, followed by those with NO3-, Fe(III), SO4 2-, and S0. When only reactions with complete TEA reduction were included, the exergonic lithotrophic reactions followed a similar electron tower. Spatial variability in deltaGr was significant for iron redox reactions, owing largely to the wide range in Fe2+ and H+ concentrations. Energy yields were compared to those obtained for samples collected in June 2001. The temporal variations in geochemical composition and energy yields observed in the Vulcano hydrothermal system between 2001 and 2003 were moderate. The largest differences in deltaGr over the 2 years were from iron redox reactions, due to temporal changes in the Fe2+ and H+ concentrations. The observed variations in fluid composition across the Vulcano hydrothermal system have the potential to influence not only microbial diversity but also the metabolic strategies of the resident microbial communities.en
dc.language.isoEnglishen
dc.publisher.nameMary Ann Liebert Inc.en
dc.relation.ispartofAstrobiologyen
dc.relation.ispartofseries6/7(2007)en
dc.subjectHydrothermal systemsen
dc.subjectVulcanoen
dc.subjectEnergeticsen
dc.subjectGeochemistryen
dc.titleTemporal Changes in Fluid Chemistry and Energy Profiles in the Vulcano Island Hydrothermal Systemen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber905-932en
dc.identifier.URLhttp://www.liebertpub.com/products/product.aspx?pid=99en
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.01. Biogeochemical cyclesen
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of watersen
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.04. Ecosystemsen
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gasesen
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systemsen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.identifier.doi10.1089/ast.2007.0128en
dc.relation.referencesAiuppa, A., Dongarrà, G., Capasso, G., and Allard, P. (2000) Trace elements in the thermal groundwaters of Vulcano Island (Sicily). Journal of Volcanology and Geothermal Research 98, 189–207. Amend, J.P., Rogers, K.L., Shock, E.L., Inguaggiato, S., and Gurrieri, S. (2003) Energetics of chemolithoautotrophy in the hydrothermal system of Vulcano Island, southern Italy. Geobiology 1, 37–58. Amend, J.P., Rogers, K.L., and Meyer-Dombard, D.R. (2004) Microbially mediated sulfur-redox: energetics in marine hydrothermal vent systems. In Sulfur Biogeochemistry: Past and Present, edited by J.P. Amend, K.J. Edwards, and T.W. Lyons, Geological Society of America, Boulder, CO, pp. 17–34. Barns, S.M., Fundyga, R.E., Jeffries, M.W., and Pace, N.R. (1994) Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc. Natl. Acad. Sci. U.S.A. 91, 1609–1613. Bolognesi, L. and D’Amore, F. (1993) Isotopic variation of the hydrothermal system on Vulcano Island, Italy. Geochim. Cosmochim. Acta 57, 2069–2082. Butterfield, D.A., Jonasson, I.R., Massoth, G.J., Feely, R.A., Roe, K.K., Embley, R.E., Holden, J.F., McDuff, R.E., Lilley, M.D., and Delaney, J.R. (1997) Seafloor eruptions and evolution of hydrothermal fluid chemistry. Philos. Trans. R. Soc. Lond. A 355 (1723), 369–386. Capaccioni, B., Tassi, F., and Vaselli, O. (2001) Organic and inorganic geochemistry of low temperature gas discharges at the Baia di Levante beach, Vulcano Island, Italy. Journal of Volcanology and Geothermal Research 108, 173–185. Capasso, G. and Inguaggiato, S. (1998) A simple method for the determination of dissolved gases in natural waters. An application to thermal waters from Vulcano Island. Appl. Geochem. 13, 631–642. Capasso, G., Favara, R., and Inguaggiato, S. (1997) Chemical features and isotopic composition of gaseous manifestations on Vulcano Island, Aeolian Islands, Italy: an interpretative model of fluid circulation. Geochim. Cosmochim. Acta 61, 3425–3440. Capasso, G., D’Alessandro, W., Favara, R., Inguaggiato, S., and Parello, F. (2001) Interaction between the deep fluids and the shallow groundwaters on Vulcano Island (Italy). Journal of Volcanology and Geothermal Research 108, 187–198. Carapezza, M., Nuccio, P.M., and Valenza, M. (1981) Genesis and evolution of the fumaroles of Vulcano (Aeolian Islands, Italy): a geochemical model. Bulletin of Volcanology 44, 547–563. Chapelle, F.H., O’Neil, K., Bradley, P.M., Methe, B.A., Ciufo, S.A., Knobel, L.L., and Lovely, D.R. (2002) A hydrogen- based subsurface microbial community dominated by methanogens. Nature 415, 312–315. Cortecci, G., Ferrara, G., and Dinelli, E. (1996) Isotopic time-variations and variety of sources for sulfur in fumaroles at Vulcano island, Aeolian archipelago, Italy. Acta Vulcanologica 8, 147–160. Cowen, J.R., Giovannoni, S.J., Kenig, F., Johnson, H.P., Butterfield, D., Rappe, M.S., Hutnak, M., and Lam, P. (2003) Fluids from aging ocean crust that support microbial life. Science 299, 120–123. Dando, P.R., Hughes, J.A., and Thiermann, F. (1995) Preliminary observations on biological communities at shallow hydrothermal vents in the Aegean Sea. In Hydrothermal Vents and Processes, edited by L.M. Parson, C.L. Walker, and D.R. Dixon, Geological Society of America, Boulder, CO, pp. 303–317. Deckert, G., Warren, P.V., Gaasterland, T., Young, W.G., Lenox, A.L., Graham, D.E., Overbeek, R., Snead, M.A., Keller, M., Aujay, M., Huber, R., Feldman, R.A., Short,J.M., Olsen, G.J., and Swanson, R.V. (1998) The complete genome of the hypthermophilic bacterium Aquifex aeolicus. Nature 392, 353–358. Gugliandolo, C. and Maugeri, T.L. (1993) Chemolithotrophic, sulfur-oxidizing bacteria from a marine, shallow hydrothermal vent of Vulcano (Italy). Geomicrobiol. J. 11, 109–120. Gugliandolo, C. and Maugeri, T.L. (1998) Temporal variations in heterotrophic mesophilic bacteria from a marine shallow hydrothermal vent off the island of Vulcano (Eolian Islands, Italy). Microb. Ecol. 36, 13–22. Gugliandolo, C., Italiano, F., Maugeri, T.L., Inguaggiato, S., Caccamo, D., and Amend, J.P. (1999) Submarine hydrothermal vents of the Aeolian Islands: relationship between microbial communities and thermal fluids. Geomicrobiol. J. 16, 105–117. Gulick, V.C. (1998) Magmatic intrusions and a hydrothermal origin for fluvial valleys on Mars. J. Geophys. Res. 103, 19365–19387. Hafenbradl, D., Keller, M., Dirmeier, R., Rachel, R., Rossnagel, P., Burggraf, S., Huber, H., and Stetter, K.O. (1996) Ferroglobus placidus gen. nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe2 at neutral pH under anoxic conditions. Arch. Microbiol. 166, 308–314. Haymon, R.M., Fornari, D.J., Von Damm, K.L., Lilley, M.D., Perfit, M.R., Edmond, J.M., Shanks, W.C., III, Lutz, R.A., Grebmeier, J.M., Carbotte, S., Wright, D., McLaughlin, E., Smith, M., Beedle, N., and Olson, E. (1993) Volcanic eruption of the mid-ocean ridge along the East Pacific Rise crest at 9°45-52 N: direct submersible observations of seafloor phenomena associated with an eruption event in April, 1991. Earth Planet. Sci. Lett. 119, 85–101. Hoaki, T., Nishijima, M., Miyashita, H., and Maruyama, T. (1995) Dense community of hyperthermophilic sulfur- dependent heterotrophs in a geothermally heated shallow submarine biotope near Kodakara-Jima Island, Kagoshima, Japan. Appl. Environ. Microbiol. 61, 1931–1937. Huber, H. and Stetter, K.O. (1989) Thiobacillus prosperus sp. nov., represents a new group of halotolerant metalmobilizing bacteria isolated from a marine geothermal field. Arch. Microbiol. 151, 479–485. Huber, J.A., Butterfield, D.A., and Baross, J.A. (2003) Bacterial diversity in a subseafloor habitat following a deep-sea volcanic eruption. FEMS Microbiol. Ecol. 43, 393–409. Hugenholtz, P., Pitulle, C., Hershberger, K.L., and Pace, N.R. (1998) Novel division level bacterial diversity in a Yellowstone hot spring. J. Bacteriol. 180, 366–376. Jakosky, B.M. and Shock, E.L. (1998) The biological potential of Mars, the early Earth, and Europa. J. Geophys. Res. 103, 19359–19364. Jannasch, H.W. and Mottl, M.J. (1985) Geomicrobiology of deep-sea hydrothermal vents. Science 229, 717–725. Johnson, J.W., Oelkers, E.H., and Helgeson, H.C. (1992) SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions among them as functions of temperature and pressure. Comput. Geosci. 18, 899–947. Keswani, J., Orkand, S., Premachandran, U., Mandelco, L., Franklin, M.J., and Whitman, W.B. (1996) Phylogeny and taxonomy of mesophilic Methanococcus spp. and comparison of rRNA DNA hybridization, and phenotypic methods. Int. J. Syst. Evol. Microbiol. 46, 727–735. McCollom, T.M. (1999) Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa. J. Geophys. Res. 104, 30729–30742. Meyer-Dombard, D.R., Shock, E.L., and Amend, J.P. (2005) Archaeal and bacterial communities in geochemically diverse hot springs of Yellowstone National Park, USA. Geobiology 3, 211–227. Parkes, R.J., Cragg, B.A., Bale, S.J., Getliff, J.M., Goodman, K., Rochelle, P.A., Fry, J.C., Weightman, A.J., and Harvey, S.M. (1994) Deep bacterial biosphere in Pacific Ocean sediments. Nature 371, 410–413. Pedersen, K. (1997) Microbial life in deep granitic rock. FEMS Microbiol. Rev. 20, 399–414. Pedersen, K. (2000) Exploration of deep intraterrestrial microbial life: current perspectives. FEMS Microbiol. Lett. 185, 9–16. Rogers, K.L. (2006) Exploring the microbe-energy interface: Geochemical reaction energetics and microbial diversity in a shallow marine hydrothermal system. PhD thesis, Washington University, St. Louis. Rogers, K.L. and Amend, J.P. (2005) Archaeal diversity and geochemical energy yields in a geothermal well on Vulcano Island, Italy. Geobiology 3, 319–332. Rogers, K.L. and Amend, J.P. (2006) Energetics of potential heterotrophic metabolisms in the marine hydrothermal system of Vulcano Island, Italy. Geochim. Cosmochim. Acta 70, 6180–6200. Rusch, A. and Amend, J.P. (2004) Order-specific 16S rRNA-targeted oligonucleotide probes for (hyper)thermophilic archaea and bacteria. Extremophiles 8, 357–366. Rusch, A., Walpersdorf, E., deBeer, D., Gurrieri, S., and Amend, J.P. (2005) Microbial communities near the oxic/anoxic interface in the hydrothermal system of Vulcano Island, Italy. Chem. Geol. 224, 169–182. Sedwick, P. and Stüben, D. (1996) Chemistry of shallow submarine warm springs in an arc-volcanic setting: Vulcano Island, Aeolian Archipelago, Italy. Mar. Chem. 53, 147–161. Shock, E.L. (1997) High-temperature life without photosynthesis as a model for Mars. J. Geophys. Res. 102, 23687–23694. Shock, E.L., Holland, M., Meyer-Dombard, D.R., and Amen, J.P. (2005) Geochemical sources of energy for microbial metabolism in hydrothermal ecosystems: Obsidian Pool, Yellowstone National Park. In Geothermal Biology and Geochemistry in Yellowstone National Park, edited by W.P. Inskeep and T.R. McDermott, Montana State University Publications, Bozeman, MT, pp. 95–109. Simmons, S. and Norris, P.R. (2002) Acidophiles of saline water at thermal vents of Vulcano, Italy. Extremophiles 6, 201–207. Skoog, A., Vlahos, P., Rogers, K.L., and Amend, J.P. (2007) Concentrations, distributions, and energy yields of dissolved neutral aldoses in a shallow hydrothermal vent system of Vulcano, Italy. Org. Geochem. 38, 1416–1430. Stetter, K.O. (1992) Ultrathin mycelia-forming organisms from submarine volcanic areas having an optimum growth temperature of 105°C. Nature 300, 258–260. Stetter, K.O., König, H., and Stackebrandt, E. (1983) Pyrodictium gen. nov., a new genus of submarine discshaped sulphur reducing archaebacteria growing optimally at 105°C. Syst. Appl. Microbiol. 4, 535–551. Stetter, K.O., Lauerer, G., Thomm, M., and Neuner, A. (1987) Isolation of extremely thermophilic sulfate reducers: evidence for a novel branch of Archaebacteria. Science 236, 822–824. Stevens, T.O. and McKinley, J.P. (1995) Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270, 450–454. Summit, M. and Baross, J.A. (1998) Thermophilic subseafloor microorganisms from the 1996 North Gorda Ridge eruption. Deep Sea Res. Part II Top. Stud. Oceanogr. 45, 2751–2766. Svensson, E., Skoog, A., and Amend, J.P. (2004) Concentration and distribution of dissolved amino acids in a shallow hydrothermal vent system, Vulcano Island (Italy). Org. Geochem. 35, 1001–1014. Tedesco, D. (1995) Fluid geochemistry at Vulcano island: a change in the volcanic regime or continuous fluctuations in the mixing of different systems? J. Geophys. Res. 100, 4157–4167. Varnes, E.S., Jakosky, B.M., and McCollom, T.M. (2003) Biological potential of martian hydrothermal systems. Astrobiology 3, 407–414. Von Damm, K.L. (2000) Chemistry of hydrothermal vent fluids from 9°-10°N, East Pacific Rise: “Time zero,” the immediate posteruptive period. J. Geophys. Res. 105, 11203–11222. Whitman, W.B., Sohn, S., Kuk, S., and Xing, R.Y. (1987) Role of amino acids and vitamins in nutrition of mesophilic Methanococcus spp. Appl. Environ. Microbiol. 53, 2373–2378. Wolery, T.J. (1992) EQ3/6: A Software Package for Geochemical Modeling of Aqueous Systems, Lawrence Livermore National Laboratory, Livermore, CA.en
dc.description.obiettivoSpecifico4.5. Degassamento naturaleen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorRogers, K. L.en
dc.contributor.authorAmend, J. P.en
dc.contributor.authorGurrieri, S.en
dc.contributor.departmentDepartment of Earth and Planetary Sciences, Washington University, St. Louis, Missouri.en
dc.contributor.departmentDepartment of Earth and Planetary Sciences, Washington University, St. Louis, Missouri.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDepartment of Earth and Planetary Sciences, Washington University, St. Louis, Missouri.-
crisitem.author.deptDepartment of Earth and Planetary Sciences, Washington University, St. Louis, MO 63130, USA-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.orcid0000-0003-4085-0440-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Rogers et al_Astrobiology 2007.pdfMain article319.54 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

20
checked on Feb 10, 2021

Page view(s) 50

160
checked on Apr 24, 2024

Download(s)

28
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric