Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4479
DC FieldValueLanguage
dc.contributor.authorallWitt, M. L. I.; Department of Earth Sciences, University of Oxford, Oxford, UK.en
dc.contributor.authorallMather, T. A.; Department of Earth Sciences, University of Oxford, Oxford, UK.en
dc.contributor.authorallPyle, D. M.; Department of Earth Sciences, University of Oxford, Oxford, UK.en
dc.contributor.authorallAiuppa, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallBagnato, E.; Dipartimento di Chimica e Fisica della Terra ed Applicazioni alle Georisorse e ai Rischi Naturali, Universita` di Palermo, Palermo, Italy.en
dc.date.accessioned2008-12-04T15:09:38Zen
dc.date.available2008-12-04T15:09:38Zen
dc.date.issued2008-06-13en
dc.identifier.urihttp://hdl.handle.net/2122/4479en
dc.description.abstractWe report measurements of Hg, SO2, and halogens (HCl, HBr, HI) in volcanic gases from Masaya volcano, Nicaragua, and gaseous SO2 and halogens from Telica volcano, Nicaragua. Mercury measurements were made with a Lumex 915+ portable mercury vapor analyzer and gold traps, while halogens, CO2 and S species were monitored with a portable multi gas sensor and filter packs. Lumex Hg concentrations in the plume were consistently above background and ranged up to 350 ng/m3. Hg/SO2 mass ratios measured with the real-time instruments ranged from 1.1*10-7 to 3.5*10-5 (mean 2*10-5). Total gaseous mercury TGM)concentrations measured by gold trap ranged from 100 to 225 ng/m3. Reactive gaseous mercury accounted for 1% of TGM, while particulate mercury was 5% of the TGM. Field measurements of Masaya’s SO2 flux, combined with the Hg/SO2 ratio, indicate a Hg flux from Masaya of 7.2 Mg/a-1. At Masaya’s low temperature fumaroles, Hg/CO2 mass ratios were consistently around 2*10-8, lower than observed in the main vent (Hg/CO2 10-7). Low-temperature fumarole Hg fluxes from Masaya are insignificant (150 g a-1). Ratios of S, C and halogen species were also measured at Masaya and Telica volcanoes. CO2/SO2 ratios at Masaya ranged from 2.8 to 3.9, comparable to previously published values. At Masaya molar Br/SO2 was 3*10-4 and I/SO2 was 2*10-5, suggesting fluxes of 0.2–0.5 Mg HBr d-1 and 0.02–0.05 Mg HI d-1. At Telica the Br/SO2 ratio was also 3*10-4 and the I/SO2 ratio was 5.8*10-5, with corresponding fluxes of 0.2 Mg HBr d-1 and 0.06 Mg HI d-1. Gases at both volcanoes are enriched in I relative to Br and Cl, compared to gases from volcanoes elsewhere.en
dc.description.sponsorshipThis work was funded by NERC grant NE/ C511180/1/.en
dc.language.isoEnglishen
dc.publisher.nameAGUen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseries/113 (2008)en
dc.subjectMercuryen
dc.subjectHalogenen
dc.subjectVolcanic emissionsen
dc.subjectMasaya volcanoen
dc.subjectTelica volcanoen
dc.titleMercury and halogen emissions from Masaya and Telica volcanoes, Nicaraguaen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB06203en
dc.identifier.URLhttp://www.agu.org/en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniquesen
dc.identifier.doi10.1029/2007JB005401en
dc.relation.referencesAiuppa, A., G. Dongarra`, M. Valenza, C. Federico, and G. Pecoraino (2003), Degassing of trace volatile metals during the 2001 eruption of Etna, in Volcanism and the Earth’s Atmosphere, Geophys. Monogr. Ser., vol. 139, edited by A. Robock and C. Oppenheimer, pp. 41– 54, AGU, Washington, D. C. Aiuppa, A., C. Federico, A. Franco, G. Giudice, S. Gurrieri, S. Inguaggiato, M. Liuzzo, A. J. S. McGonigle, and M. Valenza (2005a), Emission of bromine and iodine from Mount Etna volcano, Geochem. Geophys. Geosyst., 6, Q08008, doi:10.1029/2005GC000965. Aiuppa, A., C. Federico, G. Giudice, and S. Gurrieri (2005b), Chemical mapping of a fumarolic field: La Fossa Crater, Volcano Island (Aeolian Islands, Italy), Geophys. Res. Lett., 32, L13309, doi:10.1029/ 2005GL023207. Aiuppa, A., E. Bagnato, M. L. I. Witt, T. A. Mather, F. Parello, D. M. Pyle, and R. S. Martin (2007), Real-time simultaneous detection of volcanic Hg and SO2 at La Fossa Crater, Vulcano (Aeolian Islands, Sicily), Geophys. Res. Lett., 34, L21307, doi:10.1029/2007GL030762. Allard, P., A. Aiuppa, H. Loyer, F. Carrot, A. Gaudry, G. Pinte, A. Michel, and G. Dongarra (2000), Acid gas and metal emission rates during longlived basalt degassing at Stromboli volcano, Geophys. Res. Lett., 27, 1207– 1210, doi:10.1029/1999GL008413. Allen, A. G., T. A. Mather, A. J. S. McGonigle, A. Aiuppa, P. Delmelle, B. Davison, N. Bobrowski, C. Oppenheimer, D. M. Pyle, and S. Inguaggiato (2006), Sources, size distribution, and downwind grounding of aerosols from Mount Etna, J. Geophys. Res., 111, D10302, doi:10.1029/ 2005JD006015. Andres, R. J., and A. D. Kasgnoc (1998), A time-averaged inventory of subaerial volcanic sulfur emissions, J. Geophys. Res., 103, 25,251 – 25,261, doi:10.1029/98JD02091. Aspmo, K., et al. (2005), Measurements of atmospheric mercury species during an international study of mercury depletion events at Ny-Alesund, Svalbard, spring 2003. How reproducible are our present methods?, Atmos. Environ., 39, 7607–7619, doi:10.1016/j.atmosenv.2005.07.065. Bagnato, E. (2007), Estimates of mercury emission rates in active volcanic systems, Ph.D. thesis, 152 pp., Univ. degli Studi di Palermo, Italy. Bagnato, E., A. Aiuppa, F. Parello, S. Calabrese, W. D’Alessandro, T. A. Mather, A. J. S. McGonigle, D. M. Pyle, and I. Wa¨ngberg (2007), Degassing of gaseous (elemental and reactive) and particulate mercury from Mount Etna volcano (Southern Italy), Atmos. Environ., 41, 7377– 7388, doi:10.1016/j.atmosenv.2007.05.060. Bichler, M., K. Poljanc, and F. Sortino (1995), Determination and speciation of minor and trace elements in volcanic exhalations by NAA, J. Radioanalytical Nucl. Chem. A, 192, 183 – 194, doi:10.1007/ BF02041722. Bloom, N. S. (1992), On the chemical form of mercury in edible fish and marine invertebrate tissue, Can. J. Fish. Aquat. Sci., 49, 1010 – 1017, doi:10.1139/f92-113. Bureau, H., and N. Me´trich (2003), An experimental study of bromine behaviour in water-saturated silicic melts, Geochim. Cosmochim. Acta, 67, 1689– 1697, doi:10.1016/S0016-7037(02)01339-X. Bureau, H., H. Keppler, and N. Me´trich (2000), Volcanic degassing of bromine and iodine: Experimental fluid/melt partitioning data and applications to stratospheric chemistry, Earth Planet. Sci. Lett., 183, 51– 60, doi:10.1016/S0012-821X(00)00258-2. Burton, M. R., C. Oppenheimer, L. A. Horrocks, and P. W. Francis (2000), Remote sensing of CO2 and H2O emission rates from Masaya volcano, Nicaragua, Geology, 28, 915 – 918, doi:10.1130/0091-7613(2000) 28<915:RSOCAH>2.0.CO;2. Caltabiano, T., M. Burton, S. Giammanco, P. Allard, N. Bruno, F. Mure`, and R. Romano (2004), Volcanic gas emission from the summit craters and flanks of Mt. Etna, 1987– 2000, in Mt. Etna: Volcano Laboratory,Geophys. Monogr. Ser., vol. 143, edited by A. Bonaccorso et al., pp. 111– 128, AGU, Washington, D. C. Cartagena, R., R. Olmos, D. L. Lo´pez, T. Soriano, F. Barahona, P. A. Herna´ndez, and N. M. Pe´rez (2004), Diffuse soil degassing of carbon dioxide, radon, and mercury at San Miguel volcano, El Salvador, in Natural Hazards in El Salvador, edited by W. I. Rose, et al., Geol. Soc. Am. Spec. Pap., 375, 203– 212. Crenshaw, W. B., S. N. Williams, and R. E. Stoiber (1982), Fault location by radon and mercury detection at an active volcano, Nature, 300, 345–346, doi:10.1038/300345a0. DeDuerwarder, H., G. Decadt, and W. Baeyens (1982), Estimations of mercury fluxes emitted by Mt. Etna volcano, Bull. Volcanol., 45, 191–196, doi:10.1007/BF02597729. Delmelle, P., et al. (1999), Origin, effects of Masaya volcano’s continued unrest probed in Nicaragua, Eos Trans. AGU, 80, 575– 581. Delmelle, P., J. Stix, P. J. Baxter, J. Garcia-Alvarez, and J. Barquero (2002), Atmospheric dispersion, environmental effects and potential health hazard associated with the low-altitude gas plume of Masaya volcano, Nicaragua, Bull. Volcanol., 64, 423 – 434, doi:10.1007/s00445-002- 0221-6. Draxler, R. R., and G. D. Rolph (2003), HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model, NOAA Air Resour. Lab., Silver Spring, Md. (Available at http://www.arl.noaa.gov/ready/hysplit4.html). Duce, R. A., et al. (1991), The atmospheric input of trace species to the world ocean, Global Biogeochem. Cycles, 5, 193 – 259, doi:10.1029/ 91GB01778. Duffell, H. J., C. Oppenheimer, D. M. Pyle, B. Galle, A. J. S. McGonigle, and M. R. Burton (2003), Changes in gas composition prior to a minor explosive eruption at Masaya volcano, Nicaragua, J. Volcanol. Geotherm. Res., 126, 327–339, doi:10.1016/S0377-0273(03)00156-2. Ebinghaus, R., et al. (1999), International field intercomparison measurements of atmospheric mercury species at Mace Head, Ireland, Atmos. Environ., 33, 3063–3073, doi:10.1016/S1352-2310(98)00119-8. Egeberg, P. K., and G. R. Dickens (1999), Thermodynamic and pore water halogen constraints on gas hydrate distribution at ODP Site 997 (Blake Ridge), Chem. Geol., 153, 53 – 79, doi:10.1016/S0009-2541 (98)00152-1. Engle, M. A., M. S. Gustin, F. Goff, D. A. Counce, C. J. Janik, D. Bergfeld, and J. J. Rytuba (2006), Atmospheric mercury emissions from substrates and fumaroles associated with three hydrothermal systems in the western United States, J. Geophys. Res., 111, D17304, doi:10.1029/ 2005JD006563. Ferrara, R., B. Mazzolai, E. Lanzillotta, E. Nucaro, and N. Pirrone (2000), Volcanoes as emission sources of atmospheric mercury in the Mediterranean basin, Sci. Total Environ., 259, 115 – 121, doi:10.1016/ S0048-9697(00)00558-1. Fitzgerald,W. F., D. R. Engstrom, R. P. Mason, and E. A. Nater (1998), The case for atmospheric mercury contamination in remote areas, Environ. Sci. Technol., 32, 1–7. Fulignati, P., A. Sbrana, R. Clocchiatti, and W. Luperini (2006), Environmental impact of the acid fumarolic plume of a passively degassing volcano (Vulcano Island, Italy), Environ. Geol., 49, 1139–1155, doi:10.1007/s00254-005-0158-0. Garcı´a-Sa´nchez, A., F. Contreras, M. Adams, and F. Santos (2006), Atmospheric mercury emissions from polluted gold mining areas (Venezuela), Environ. Geochem. Health, 28, 529 – 540, doi:10.1007/ s10653-006-9049-x. Gemmell, J. B. (1987), Geochemistry of metallic trace elements in fumarolic condensates from Nicaraguan and Costa Rican volcanoes, J. Volcanol. Geotherm. Res., 33, 161– 181, doi:10.1016/0377-0273(87)90059-X. Gerlach, T. M. (2004), Volcanic sources of tropospheric ozone-depleting trace gases, Geochem. Geophys. Geosyst., 5, Q09007, doi:10.1029/ 2004GC000747. Ghorishi, S. B., C. W. Lee, W. S. Jozewicz, and J. D. Kilgroe (2005), Effects of fly ash transition metal content and flue gas HCl/SO2 ratio on mercury speciation in waste combustion, Environ. Eng. Sci., 22, 221–231, doi:10.1089/ees.2005.22.221. Giammanco, S., M. Ottaviani, M. Valenza, E. Veschetti, E. Principio, G. Giammanco, and S. Pignato (1998), Major and trace elements geochemistry in the ground waters of a volcanic area: Mount Etna (Sicily, Italy), Water Res., 32, 19–30, doi:10.1016/S0043-1354(97)00198-X. Hinkley, T. K., P. J. Lamothe, S. A. Wilson, D. L. Finnegan, and T. M. Gerlach (1999), Metal emissions from Kilauea, and a suggested revision of the estimated worldwide metal output by quiescent degassing of volcanoes, Earth Planet. Sci. Lett., 170, 315 – 325, doi:10.1016/ S0012-821X(99)00103-X. Honda, F. (1970), Geochemical study of iodine in volcanic gases. II. Behaviour of iodine in volcanic gases, Geochem. J., 3, 201– 211. Hurwitz, S., R. H. Mariner, U. Fehn, and G. T. Snyder (2005), Systematics of halogen elements and their radioisotopes in thermal springs of the Cascade Range, Central Oregon, Western USA, Earth Planet. Sci. Lett., 235, 700– 714, doi:10.1016/j.epsl.2005.04.029. Jarrard, R. D. (2003), Subduction fluxes of water, carbon dioxide, chlorine, and potassium, Geochem. Geophys. Geosyst., 4(5), 8905, doi:10.1029/ 2002GC000392. Jitaru, P., and F. Adams (2004), Toxicity, sources and biogeochemical cycle of mercury, J. Phys., 121, 185– 193. Johnson, L. H., R. Burgess, G. Turner, H. J. Milledge, and J. W. Harris (2000), Noble gas and halogen geochemistry of mantle fluids: Comparison of African and Canadian diamonds, Geochim. Cosmochim. Acta, 64, 717– 732, doi:10.1016/S0016-7037(99)00336-1. Jonnalagadda, S. B., and P. Rao (1993), Toxicity, bioavailability and metal speciation, Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol., 106, 585– 595, doi:10.1016/0742-8413(93)90215-7. Kim, K. H., V. K. Mishra, and S. Hong (2006), The rapid and continuous monitoring of gaseous elemental mercury (GEM) behaviour in ambient air, Atmos. Environ., 40, 3281 – 3293, doi:10.1016/j.atmosenv. 2006.01.046. Landis, M. S., R. K. Stevens, F. Schaedlich, and E. M. Prestbo (2002), Development and characterization of an annular denuder methodology for the measurement of divalent inorganic reactive gaseous mercury in ambient air, Environ. Sci. Technol., 36, 3000–3009. Lewicki, J. L., C. Connor, K. St.-Amand, J. Stix, and W. Spinner (2003), Self-potential, soil CO2 flux, and temperature on Masaya volcano, Nicaragua, Geophys. Res. Lett., 30(15), 1817, doi:10.1029/ 2003GL017731. Lindberg, S. E., and W. J. Stratton (1998), Atmospheric mercury speciation: Concentrations and behavior of reactive gaseous mercury in ambient air, Environ. Sci. Technol., 32, 49–57. Lindqvist, O., and H. Rodhe (1985), Atmospheric mercury - A review, Tellus, Ser. B, 37, 136– 159. Lopez, D. L., L. Ransom, N. M. Perez, P. A. Hernandez, and J. Monterrosa (2004), Dynamics of diffuse degassing at Ilopango Caldera, El Salvador, in Natural Hazards in El Salvador, edited by W. I. Rose et al., Geol. Soc. Am. Spec. Pap., 375, 191– 202. Lynam, M. M., and G. J. Keeler (2006), Source-receptor relationships for atmospheric mercury in urban Detroit, Michigan, Atmos. Environ., 40, 3144– 3155, doi:10.1016/j.atmosenv.2006.01.026. Martin, J. B., J. M. Gieskes, M. Torres, and M. Kastner (1993), Bromine and iodine in Peru margin sediments and pore fluids: Implications for fluid origins, Geochim. Cosmochim. Acta, 57, 4377–4389, doi:10.1016/ 0016-7037(93)90489-J. Martin, R. S., T. A. Mather, and D. M. Pyle (2006), High-temperature mixtures of magmatic and atmospheric gases, Geochem. Geophys. Geosyst., 7, Q04006, doi:10.1029/2005GC001186. Mason, R. P., J. R. Reinfelder, and F. M. M. Morel (1995), Bioaccumulation of mercury and methylmercury, Water Air Soil Pollut., 80, 915– 921, doi:10.1007/BF01189744. Mather, T. A., D. M. Pyle, and C. Oppenheimer (2003), Tropospheric volcanic aerosol, in Volcanism and the Earth’s Atmosphere, Geophys. Monograph Ser., vol. 139, edited by A. Robock and C. Oppenheimer, pp. 189– 212, AGU, Washington, D. C. Mather, T. A., D. M. Pyle, and A. G. Allen (2004), Volcanic source for fixed nitrogen in the early Earth’s atmosphere, Geology, 32(10), 905–908. Mather, T. A., D. M. Pyle, V. I. Tsanev, A. J. S. McGonigle, C. Oppenheimer, and A. G. Allen (2006), A reassessment of current volcanic emissions from the Central American arc with specific examples from Nicaragua, J. Volcanol. Geotherm. Res., 149, 297 – 311, doi:10.1016/j.jvolgeores. 2005.07.021. Morel, F. M. M., A. M. L. Kraepiel, and M. Amyot (1998), The chemical cycle and bioaccumulation of mercury, Annu. Rev. Ecol. Syst., 29, 543– 566, doi:10.1146/annurev.ecolsys.29.1.543. Munthe, J., et al. (2001), Intercomparison of methods for sampling and analysis of atmospheric mercury species, Atmos. Environ., 35, 3007– 3017, doi:10.1016/S1352-2310(01)00104-2. Nadeau, P. A., and G. Williams-Jones (2008), Apparent downwind depletion of volcanic SO2 flux: Lessons from Masaya volcano, Nicaragua, Bull. Volcanol., in press. Newsom, H. E. (1995), Composition of the solar system, planets, meteorites, and major terrestrial reservoirs, in A Handbook of Physical Constants: Global Earth Physics, Ref. Shelf, vol. 1, edited by T. J. Ahrens, pp. 159– 189, AGU, Washington, D. C. Nozaki, Y. (1997), A fresh look at element distribution in the North Pacific Ocean, Eos Trans. AGU, 78(21), 221. Nriagu, J. O. (1989), A global assessment of natural sources of atmospheric trace metals, Nature, 338, 47– 49, doi:10.1038/338047a0. Nriagu, J., and C. Becker (2003), Volcanic emissions of mercury to the atmosphere: global and regional inventories, Sci. Total Environ., 304, 3 –12, doi:10.1016/S0048-9697(02)00552-1. Pacyna, E. G., and J. M. Pacyna (2002), Global emission of mercury from anthropogenic sources in 1995, Water Air Soil Pollut., 137, 149–165, doi:10.1023/A:1015502430561. Phelan, J. M., D. L. Finnegan, D. S. Ballantine, and W. H. Zoller (1982), Airborne aerosol measurements in the quiescent plume of Mount St. Helens: September, 1980, Geophys. Res. Lett., 9, 1093 – 1096, doi:10.1029/GL009i009p01093. Pirrone, N., G. Glinsorn, and G. J. Keeler (1995), Ambient levels and dry deposition fluxes of mercury to Lakes Huron, Erie and St. Clair, Water Air Soil Pollut., 80, 179– 188, doi:10.1007/BF01189666. Pirrone, N., G. J. Keeler, and J. O. Nriagu (1996), Regional differences in worldwide emissions of mercury to the atmosphere, Atmos. Environ., 30, 2981–2987, doi:10.1016/1352-2310(95)00498-X. Plank, T., and C. H. Langmuir (1998), The chemical composition of subducting sediment and its consequences for the crust and mantle, Chem. Geol., 145, 325– 394, doi:10.1016/S0009-2541(97)00150-2. Poissant, L., M. Pilote, C. Beauvais, P. Constant, and H. H. Zhang (2005), Ayear of continuous measurements of three atmospheric mercury species (GEM, RGM and Hg-p) in southern Quebec, Canada, Atmos. Environ., 39, 1275–1287, doi:10.1016/j.atmosenv.2004.11.007. Pyle, D. M., and T. A. Mather (2003), The importance of volcanic emissions for the global atmospheric mercury cycle, Atmos. Environ., 37, 5115– 5124, doi:10.1016/j.atmosenv.2003.07.011. Roche, O., B. van Wyk de Vries, and T. H. Druitt (2001), Sub-surface structures and collapse mechanisms of summit pit craters, J. Volcanol. Geotherm. Res., 105, 1 –18, doi:10.1016/S0377-0273(00)00248-1. Rymer, H., B. V. de Vries, J. Stix, and G. Williams-Jones (1998), Pit crater structure and processes governing persistent activity at Masaya Volcano, Nicaragua, Bull. Volcanol., 59, 345– 355, doi:10.1007/s004450050196. Sakata, M., and K. Marumoto (2004), Dry deposition fluxes and deposition velocities of trace metals in the Tokyo metropolitan area measured with a water surface sampler, Environ. Sci. Technol., 38, 2190– 2197. Schroeder, W. H., and J. Munthe (1998), Atmospheric mercury - An overview, Atmos. Environ., 32, 809 – 822, doi:10.1016/S1352-2310 (97)00293-8. Schroeder, W. H., G. Keeler, H. Kock, P. Roussel, D. Schneeberger, and F. Schaedlich (1995), International field intercomparison of atmospheric mercury measurement methods, Water Air Soil Pollut., 80, 611– 680, doi:10.1007/BF01189713. Shannon, J. D., and E. C. Voldner (1995), Modeling atmospheric concentrations of mercury and deposition to the great lakes, Atmos. Environ., 29, 1649–1661, doi:10.1016/1352-2310(95)00075-A. Shinohara, H. (2005), A new technique to estimate volcanic gas composition: plume measurements with a portable multi-sensor system, J. Volcanol. Geotherm. Res., 143, 319– 333, doi:10.1016/j.jvolgeores. 2004.12.004. Sholupov, S. E., and A. A. Ganeyev (1995), Zeeman atomic absorption spectrometry using high frequency modulated light polarization, Spectrochim. Acta Part B: Atomic Spectrosc., 50, 1227– 1236, doi:10.1016/ 0584-8547(95)01316-7. Siegel, S. M., and B. Z. Siegel (1984), First estimate of annual mercury flux at the Kilauea main vent, Nature, 309, 146– 147, doi:10.1038/309146a0. Slemr, F., G. Schuster, and W. Seiler (1985), Distribution, speciation, and budget of atmospheric mercury, J. Atmos. Chem., 3, 407 – 434, doi:10.1007/BF00053870. Snyder, G. T., and U. Fehn (2002), Origin of iodine in volcanic fluids: 129I results from the Central American Volcanic Arc, Geochim. Cosmochim. Acta, 66, 3827– 3838, doi:10.1016/S0016-7037(02)00825-6. Stoiber, R. E., S. N. Williams, and B. J. Huebert (1986), Sulfur and halogen gases at Masaya caldera complex, Nicaragua: Total flux and variations with time, J. Geophys. Res., 91, 12,215 – 12,231, doi:10.1029/ JB091iB12p12215. Ullrich, S. M., T. W. Tanton, and S. A. Abdrashitova (2001), Mercury in the aquatic environment: A review of factors affecting methylation, Crit. Rev. Environ. Sci. Technol., 31, 241–293, doi:10.1080/20016491089226. Valente, R. J., C. Shea, K. L. Humes, and R. L. Tanner (2007), Atmospheric mercury in the Great Smoky Mountains compared to regional and global levels, Atmos. Environ., 41, 1861 – 1873, doi:10.1016/j.atmosenv. 2006.10.054. Varekamp, J. C., and P. R. Buseck (1981), Mercury emissions from Mount St. Helens during September 1980, Nature, 293, 555– 556, doi:10.1038/ 293555a0. Varekamp, J. C., and P. R. Buseck (1986), Global mercury flux from volcanic and geothermal sources, Appl. Geochem., 1, 65 – 73, doi:10.1016/0883-2927(86)90038-7. Varrica, D., A. Aiuppa, and G. Dongarra (2000), Volcanic and anthropogenic contribution to heavy metal content in lichens from Mt. Etna and Vulcano island (Sicily), Environ. Pollut., 108, 153 – 162, doi:10.1016/ S0269-7491(99)00246-8. Watt, S. F. L., D. M. Pyle, T. A. Mather, J. A. Day, and A. Aiuppa (2007), The use of tree rings and foliage as an archive of volcanogenic cation deposition, Environ. Pollut., 148, 48 – 61, doi:10.1016/j.envpol. 2006.11.007.en
dc.description.obiettivoSpecifico4.5. Degassamento naturaleen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorWitt, M. L. I.en
dc.contributor.authorMather, T. A.en
dc.contributor.authorPyle, D. M.en
dc.contributor.authorAiuppa, A.en
dc.contributor.authorBagnato, E.en
dc.contributor.departmentDepartment of Earth Sciences, University of Oxford, Oxford, UK.en
dc.contributor.departmentDepartment of Earth Sciences, University of Oxford, Oxford, UK.en
dc.contributor.departmentDepartment of Earth Sciences, University of Oxford, Oxford, UK.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentDipartimento di Chimica e Fisica della Terra ed Applicazioni alle Georisorse e ai Rischi Naturali, Universita` di Palermo, Palermo, Italy.en
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDepartment of Earth Sciences, University of Oxford-
crisitem.author.deptDepartment of Earth Sciences, University of Oxford-
crisitem.author.deptEarth Science Department, University of Oxford, UK-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0003-4259-7303-
crisitem.author.orcid0000-0002-0254-6539-
crisitem.author.orcid0000-0003-2285-0842-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Witt et al., JGR 2008.pdfMain article1.81 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

76
checked on Feb 10, 2021

Page view(s) 50

450
checked on Apr 24, 2024

Download(s)

26
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric