Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/440
DC FieldValueLanguage
dc.contributor.authorallDel Pezzo, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallBianco, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallPetrosino, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallSaccorotti, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2005-09-30T09:28:03Zen
dc.date.available2005-09-30T09:28:03Zen
dc.date.issued2004-04en
dc.identifier.urihttp://hdl.handle.net/2122/440en
dc.description.abstractWe study the time changes of (1) the b-value of the Gutenberg–Richter distribution, (2) the inverse coda Q(QC-1 ), and (3) the shear-wave splitting parameters (i.e., the time delay Td between qS1 and qS2 phases and the polarization direction of the qS1 wave) for small-magnitude volcano-tectonic earthquakes of Mt. Vesuvius, Italy. We used for (1) the seismic catalog of Mt. Vesuvius seismicity starting from January 1994, for (2) a selected (on the basis of the best signal-to-noise ratio) set of data with hypocentral distances smaller than 4 km recorded at station BKE (analogical) with a 1-Hz vertical seismometer during the period from January 1994 until the present, and for (3) a set of data recorded at two digital, high dynamical range, portable short-period seismic stations. These stations (BKE and BKN) were in operation in two periods, BKE (digital) from January 1999 to the middle of 2000 and BKN from January 1999 to the end of 1999; the hypocentral distances were not greater than 4 km. We found evidence of time changes of QC-1 measured at high frequency (6, 12, and 18 Hz).The changes seem to be correlated with the occurrence of two swarms with largest magnitudes of 3.4 and 3.6, respectively in April 1996 and October 1999. The earthquake with the largest magnitude in the second swarm appears to be the largest event since the latest eruption in 1944. An increase in QC-1 starts after the occurrence of both swarms, reaching a maximum after more than 1 yr for the first swarm and after 6 months for the second swarm. These two changes were not accompained by any corresponding variation of the b-value, which shows an almost constant (inside the statistical uncertainty) pattern. The last swarm (M 3.6) was preceeded by an increase of Td at both stations, indicating a possible change of the stress state before the M 3.6 earthquake.The qS1 polarization direction also shows a variation in correspondence to the same earthquake, which was interpreted as generated by an increase of the differential stress acting at a regional scale in the north–south direction shortly before the M 3.6 event. The strain change associated to this earthquake was estimated to be of the order of 10 -9 using data from the straingram recorded at a Sacks–Evertson dilatometer located about 3 km from the epicenter. The given information allows us to estimate the sensitivity of the the measured parameters to the strain change induced by the M 3.6 earthquake. The sensitivity is of the order of 1.4 x 10 9 (QC-1/strain units) for QC-1 and is of the order of 2 x 10 10(msec/strain units) for Td.en
dc.format.extent469 bytesen
dc.format.extent1292584 bytesen
dc.format.mimetypetext/htmlen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.relation.ispartofBulletin of the Seismological Society of Americaen
dc.relation.ispartofseries94, 2en
dc.subjectVolcano-tectonic earthquakesen
dc.subjectMt. Vesuviusen
dc.titleChanges in the Coda Decay Rate and Shear-Wave Splitting Parameters Associated with Seismic Swarms at Mt. Vesuvius, Italyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber439-452en
dc.identifier.URLhttp://bssa.geoscienceworld.orgen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropyen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysisen
dc.relation.referencesAki, K. (1969). Analisys of seismic coda of local earthquakes as scattered waves, J.Geophys. Res. 72, 1217–1231. Aki, K., and B. Chouet (1975). Origin of coda waves: source, attenuation, and scattering effects, J. Geophys. Res. 80, 3322–3342. Antolik, M., R. M. Nadeau, R. C. Aster, and T. V. McEvilly (1996). Differential analysis of coda Q using similar microearthquakes in seismic gaps, part II: Application to seismograms recorded by the Parkfield high resolution seismic network, Bull. Seism. Soc. Am. 86, 890–910. Aster, R. C., G. Slad, J. Henton, and M. Antolik (1996). Differential analysis of coda Q using similar microearthquakes in seismic gaps, part I: Techniques and application to seismograms recorded in the Anza seismic gap, Bull. Seism. Soc. Am. 86, 868–889. Auger, E., P. Gasparini, J. Virieux, and A. Zollo (2001). Seismic evidence of an extended magmatic sill under Mt. Vesuvius, Science 294, 1510–1512. Baisch, S., and G. H. Bokelmann (2001). Seismic waveform attributes before and after the Loma Prieta earthquake; scattering change near the earthquake and temporal recovery, J. Geophys. Res. 106, 16,323–16,337. Bianco, F., M. Castellano, G. Milano, G.Ventura, and G. Vilardo (1998). The Somma–Vesuvius stress-field induced by regional tectonics: evidences from seismological and mesostructural data, J. Volcanol. Geothern. Res. 82, 199–218. Bianco, F., M. Castellano, E. Del Pezzo, and J. Ibanez (1999a). Attenuation of the short period seismic waves at Mt. Vesuvius, Italy, Geophys. J. Int. 138, 67–76. Bianco, F., M. Castellano, G. Milano, G.Vilardo, F. Ferrucci, and S. Gresta (1999b). The seismic crisis at Mt. Vesuvius during 1995 and 1996, Phys. Chem. Earth 24, 977–983. Bokelmann, G. H. and H. P. Harjes (2000). Evidence for temporal variation of seismic velocity within the upper continental crust, J. Geophys. Res. 105, 23,879–23,894. Booth, D. C., J. H. Lovell, and J. M. Chiu (1990). Temporal changes in shear wave splitting during an earthquake swarm in Arkansas, J. Geophys. Res. 95, 11,151–11,164. Bruno, P., G. Cippitelli, and A. Rapolla (1998). Seismic study of the Mesozoic carbonate basement around Mt. Somma–Vesuvius, Italy, J. Volcanol. Geotherm. Res. 84, 311–322. Carta, S., R. Figari, G. Sartoris, E. Sassi, and R. Scandone (1981). A statistical model of Vesuvius and its volcanological implication, Bull. Volcanol. 44, no. 2, 129–151. Castellano, M., C. Buonocunto, M. Capello, and M. La Rocca (2002). Seismic surveillance of active volcanoes: the Osservatorio Vesuviano Seismic Network (OVSN–southern Italy), Seim. Res. Lett. 73, 168–175. Chouet, B. (1996). New methods and future trends in seismological volcano monitoring, in Monitoring and Mitigation of Volcano Hazards, R. Scarpa and R. I. Tilling (Editors), Springer, New York, 23–97. Crampin, S. (1987). Geological and industrial implications of extensive dilatancy anisotropy, Nature 328, 491–496. Crampin, S. (1999). Calculable fluid–rock interactions, J. Geol. Soc. London 156, 501–514. Crampin, S., and S. V. Zatsepin (1997). Modelling the compliance of crustal rock, II. Response to temporal changes before earthquakes, Geophys. J. Int. 129, 495–506. Crampin, S., T. Volti, and R. Stefansson (1999). A successfully stressforecast earthquake, Geophys. J. Int. 138, F1–F5. Del Pezzo, E., F. Bianco, and G. Saccorotti (2003a). Seismic source dynamics at Vesuvius volcano, Italy, J. Volcanol. Geotherm. Res. 3017, 1–18. Del Pezzo, E., F. Bianco, and G. Saccorotti (2003b). Duration magnitude uncertainty due to seismic noise: inferences on the temporal pattern of Gutenberg–Richter b-value at Mt. Vesuvius, Italy, Bull. Seism. Soc. Am. 93, 1847–1853. Di Maio, R., P. Mauriello, D. Patella, Z. Petrillo, S. Piscitelli, and A. Siniscalchi (1998). Electric and electromagnetic outline of the Mount Somma–Vesuvius structural setting, J. Volcanol. Geotherm. Res. 82, 219–238. Fedi, M., G. Florio, and A. Rapolla (1998). 2.5D modelling of Somma–Vesuvius structure by aeromagnetic data, J. Volcanol. Geotherm. Res. 82, 239–247. Gao, Y., P. Wang, S. Zheng, M. Wang, Y. Chen, and H. Zhou (1998). Temporal changes in shear-wave splitting at an isolated swarm of small earthquakes in 1992 near Dongfang, Hainan Island, southern China, Geophys. J. Int. 135, 102–112. Hellweg, M. P., P. Spudich, J. B. Fletcher, and L. M. Baker (1995). Stability of coda Q in the region of Parkfield, California: the view from the USGS Parkfield dense seismograph array, J. Geophys. Res. 100, 2089–2102. Hiramatsu, Y., N. Hayashi, and M. Furumoto (2000). Temporal changes in coda QC-1 and b value due to the static stress change associated with the 1995 Hyogo-ken Nambu earthquake, J. Geophys. Res. 105, 6141–6151. Hyppolite, J., J. Angelier, and F. Roure (1994). A major change revealed by Quaternary stress patterns in the southern Apennines, Tectonophysics 230, 199–210. Jin, A., and K. Aki (1986). Temporal changes in coda Q before the Tangshan earthquake of 1976 and the Haicheng earthquake of 1975, J. Geophys. Res. 91, 665–673. Jin, A., and K. Aki (1989). Spatial and temporal correlation between coda QC-1 and seismicity and its physical mechanism, J. Geophys. Res. 94, 14,041–14,059. Li, Y. G., T. L. Teng, and T. L. Henyey (1994). Shear-wave splitting observations in the northern Los Angeles Basin, southern California, Bull. Seism. Soc. Am. 84, no. 2, 307–323. Liu, Y., S. Crampin, and I. Main (1997). Shear-wave anisotropy: spatial and temporal variations in time delays at Parkfield, central California, Geophys. J. Int. 130, 771–785. Miller, V., and M. Savage (2001). Changes in seismic anisotropy after volcanic eruptions: evidence from Mt. Ruapehu, Science 293, 2231–2233. Muir-Wood, R. (1994). Earthquakes, strain-cycling, and the mobilization of fluids, in Geofluids: Origin, Migration, and Evolution of Fluids in ì Sedimentary Basins, J. Parnell (Editor), Geological Society Special Publication 78, 85–98. Peacock, S., S. Crampin, D. C. Booth, and J. B. Fletcher (1988). Shear wave splitting in the Anza seismic gap, southern California: temporal variations as possible precursors, J. Geophys. Res. 93, 3339–3356. Peng, J. Y., K. Aki, B. Chouet, P. Johnson, W. H. K. Lee, S. Marks, J. T. Newberry, A. S. Ryall, S. W. Stewart, and D. M. Tottingham (1987). Temporal change in coda Q associated with the Round Valley, California, earthquake of November 23, 1984, J. Geophys. Res. 92, 3507–3526. Person, M., and L. Baumgartner (1995). New evidence for long-distance fluid migration within the Earth’s crust, Rev. Geophys. 33 (Suppl.) 6152–6174. Principe, C., M. Rosi, R. Santacroce, and A. Sbrana (1987). Explanatory notes to the geological map, in Somma-Vesuvius, R. Santacroce (Editor), Quad. Ric. Sci. 114, 11–51. Rojstaczer, S., and S. Wolf (1992). Permeability changes associated with large earthquakes: an example from Loma Prieta, California, Geology 20, 211–214. Rosi, M., R. Santacroce, and M. F. Sheridan (1987). Volcanic hazard, in Somma-Vesuvius, R. Santacroce (Editor), Quad. Ric. Sci., 1141, 197–234. Saccorotti, G., R. Maresca, and E. Del Pezzo (2001). Array analyses of seismic noise at Mt. Vesuvius Volcano, Italy, J. Volanol. Geotherm. Res. 110, 79–100. Santacroce, R. (1983). A general model for the behavior of the Somma–Vesuvius volcanic complex, J. Volcanol. Geotherm. Res. 17, 237–248. Sato, H., and M. C. Fehler (1998). Seismic Wave Propagation and Scattering in the Heterogeneous Earth, Springer, New York. Scarpa, R., F. Tronca, F. Bianco, and E. Del Pezzo (2002). High resolution velocity structure beneath Mount Vesuvius from seismic array data, Geophys. Res. Lett. 29, no. 21, 2040, doi 10029/2002GL015576. Sibson, R. H. (1994). Crustal stress, faulting, and fluid flow, in Geofluids: Origin, Migration, and Evolution of Fluids in Sedimentary Basins, Parnell (Editor), Geological Society Special Publication 78, 69–84. Tselentis, G. A. (1997). Evidence for stability in coda Q associated with the Egion (central Greece) earthquake of 15 June 1995, Bull. Seism. Soc. Am. 87, 1679–1684. Udias, A. (1999). Principles of Seismology, Cambridge U Press, New York Wang, J. H., T. L. Teng, and K. F. Ma (1989). Temporal variation of coda Q during Hualien earthquake of 1986 in eastern Taiwan, Pageoph 130, 617–634. Wyss, M. (1985).Precursors to large earthquakes, Earthquake Pred. Res. 3, 519–543. Wyss, M., K. Shimazaki, and S. Wiemer (1997). Mapping active magma 452 E. Del Pezzo, F. Bianco, S. Petrosino, and G. Saccorotti chambers by b-values beneath the off-Ito volcano, Japan, J. Geophys. Res. 102, 20,413–20,422. Zatsepin, S. V., and S. Crampin (1997). Modelling the compliance of crustal rock, I. Response of shear wave splitting to differential stress, Geophys. J. Int. 129, 477–494. Zollo, A., P. Gasparini, J. Virieux, H. Le Meur, G. De Natale, G. Biella, E. Boschi, P. Capuano, R. De Franco, P. Dell’ Aversana, R. De Matteis, I. Guerra, G. Iannaccone, L. Mirabile, and G. Vilardo (1996). Seismic evidence for a low-velocity zone in the upper crust beneath Mt. Vesuvius, Science 274, 592–594.en
dc.description.fulltextpartially_openen
dc.contributor.authorDel Pezzo, E.en
dc.contributor.authorBianco, F.en
dc.contributor.authorPetrosino, S.en
dc.contributor.authorSaccorotti, G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.orcid0000-0002-6981-5967-
crisitem.author.orcid0000-0001-5400-7724-
crisitem.author.orcid0000-0002-5042-0244-
crisitem.author.orcid0000-0003-2915-1446-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Del Pezzo1.pdf1.26 MBAdobe PDF
bssa.htmredirect - bssa469 BHTMLView/Open
Show simple item record

Page view(s) 50

216
checked on Mar 27, 2024

Download(s) 50

102
checked on Mar 27, 2024

Google ScholarTM

Check