Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4397
DC FieldValueLanguage
dc.contributor.authorallFolch, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallCavazzoni, C.; Consorzio Interuniversitario CINECA, Bologna, Italyen
dc.contributor.authorallCosta, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallMacedonio, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2008-12-01T15:31:41Zen
dc.date.available2008-12-01T15:31:41Zen
dc.date.issued2008en
dc.identifier.urihttp://hdl.handle.net/2122/4397en
dc.description.abstractTephra fallout constitutes a serious threat to communities around active volcanoes. Reliable short-term 13 forecasts represent a valuable aid for scientists and civil authorities to mitigate the effects of fallout on the 14 surrounding areas during an episode of crisis. We present a platform-independent automatic procedure with Q1 15 the aim to daily forecast transport and deposition of volcanic particles. The procedure builds on a series of 16 programs and interfaces that automate the data flow and the execution and subsequent postprocess of fallout 17 models. Firstly, the procedure downloads regional meteorological forecasts for the area and time interval of 18 interest, filters and converts data from its native format, and runs the CALMET diagnostic model to obtain the 19 wind field and other micro-meteorological variables on a finer local-scale 3-D grid defined by the user. 20 Secondly, it assesses the distribution of mass along the eruptive column, commonly by means of the radial 21 averaged buoyant plume equations depending on the prognostic wind field and on the conditions at the vent 22 (granulometry, mass flow rate, etc). All these data serve as input for the fallout models. The initial version of 23 the procedure includes only two Eulerian models, HAZMAP and FALL3D, the latter available as serial and 24 parallel implementations. However, the procedure is designed to incorporate easily other models in a near 25 future with minor modifications on the model source code. The last step is to postprocess the outcomes of 26 models to obtain maps written in standard file formats. These maps contain plots of relevant quantities such 27 as predicted ground load, expected deposit thickness and, for the case of or 3-D models, concentration on air 28 or flight safety concentration thresholdsen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofJournal of Volcanology and Geothermal Researchen
dc.relation.ispartofseries4/177 (2008)en
dc.subjectTephra fallouten
dc.subjectvolcanoesen
dc.titleAn automatic procedure to forecast tephra fallouten
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber767-777en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risken
dc.subject.INGV05. General::05.09. Miscellaneous::05.09.99. General or miscellaneousen
dc.identifier.doi10.1016/j.jvolgeores.2008.01.046en
dc.relation.referencesArmienti, P., Macedonio, G., Pareschi, M., 1988. A numerical model for the simulation of tephra transport and deposition: applications to May 18,1980,Mt. St. Helens eruption. J. Geophys. Res. 93 (B6), 6463–6476. Bursik, M., 2001. Effect of wind on the rise height of volcanic plumes. Geophys. Res. Lett. 18, 3621–3624. Bursik, M.I., Sparks, R.S.J., Gilbert, J., Carey, S.N., 1992a. Sedimentation of tephra by volcanic plumes. I. Theory and its comparison with a study of the Fogo A Plinian deposit Sao Miguel (Azores). Bull. Volcanol. 54, 329–344. Bursik, M.I., Carey, S.N., Sparks, R.S.J., 1992b. A gravity current model for the May 18, 1980 Mount-St-Helens plume. Geophys. Res. Lett. 19, 1663–1666. Bonadonna, C., Ernst, G., Sparks, R.S.J., 1998. Thickness variations and volume estimates of tephra fall deposits: the importance of particle Reynolds number. J. Volcanol. Geotherm. Res. 81, 173–187. Bonadonna, C., Macedonio, G., Sparks, R.S.J., 2002. Numerical modelling of tephra fallout associated with dome collapses and Vulcanian explosions: application to hazard assessment on Montserrat. In: Druitt, T., Kokelaar, B. (Eds.), The Eruption of Soufriére Hills Volcano, Montserrat, pp. 517–537. from 1995 to 1999. Geol. Soc. Lond. Bonadonna, C., Phillips, J.C., 2003. Sedimentation from strong volcanic plumes. J. Geophys. Res. 108 (B7), 2340. doi:10.1029/2002JB002034. Carey, S., Sigurdsson, H., 1982. Influence of particle aggregation on deposition of distal tephra from the May 18,1980, eruption of Mount St-Helens volcano. J. Geophys. Res. 87 (B8), 7061–7072. Carey, S., Sparks, R.S.J., 1986. Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull. Volcanol. 48, 109–125. Casadevall, T.J., 1993. Volcanic ash and airports- discussion and recommendations from the workshop on impacts of volcanic ash on airport facilities. U.S. Geological Survey Open-File Report, pp. 93–518. 52. Chester, D.L., Degg, M., Duncan, A.M., Guest, J.E., 2001. The increasing exposure of cities to the effects of volcanic eruptions: a global survey. Environ. Hazards, 2, 89–103. Connor, C., Hill, B., Winfrey, B., Franklin, M., La Femina, P., 2001. Estimation of volcanic hazards from tephra fallout. Nat. Hazards Rev. 2, 33–42. Costa, A., Macedonio, G., Folch, A., 2006. A three-dimensional Eulerian model for transport and deposition of volcanic ashes. Earth Planet. Sci. Lett., 241 (3–4), 634–647. D'Amours, R., 1998. Modeling the ETEX plume dispersion with the Canadian emergency response model. Atmos. Environ. 32 (24), 4335–4341. Dellino, P., Mele, D., Bonasia, R., Braia, G., La Volpe, L., Sulpizio, R., 2005. The analysis of the influence of pumice shape on its terminal velocity. Geophys. Res. Lett. 32, 21306–21309. Draxler, R.R., Rolph, G.D., 2003. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY. Website (http://www.arl.noaa.gov/ ready/hysplit4.html). NOAA Air Resources Laboratory, Silver Spring, MD. Dutton, J., Fichtl, G., 1969. Approximate equations of motion for gases and liquids. J. Atmos. Sci. 26, 241–254. Folch, A., Felpeto, A., 2005. A coupled model for the dispersal of tephra during sustained explosive eruptions. J. Volcanol. Geotherm. Res. 145 (3–4), 337–349. Ganser, G., 1993. A rational approach to drag prediction spherical and non-spherical particles. Powder Technol. 77, 143–152. Glaze, L., Self, S., 1991. Ashfall dispersal for the 16 September 1986 eruption of Lascar, Chile, calculated by a turbulent diffusion model. Geophys. Res. Lett. 18, 1237–1240. Heffter, J., Stunder, B., 1993. Volcanic ash forecast transport and dispersion (Vaftad) model. Weather Forecast. 8, 533–541. Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J.J., Fiorino, M., Potter, G.L., 2002. NCEP-DEO AMIP-II Reanalysis (R-2). Bul. of the Atmos. Met. Soc. 1631–1643. Koyaguchi, T., 1994. Grain-size variation of the tephra derived from umbrella clouds. Bull. Volcanol. 56, 1–9. Koyaguchi, T., Ohno, M., 2001. Reconstruction of the eruption column dynamics on the basis of grain size of tephra fall deposits. 1. Metods. J. Geophys. Res. 106 (B4), 6499–6512. Macedonio, G., Pareschi, M., Santacroce, R., 1988. A numerical simulation of the Plinian fall phase of the 79 AD eruption of Vesuvius. J. Geophys. Res. 93 (B12),14817–14827. Macedonio, G., Costa, A., Longo, A., 2005. A computer model for volcanic ash fallout and assessment of subsequent hazard. Comput. Geosci. 31 (7), 837–845. McGimsey, R.G., Neal, C.A., Riley, C.M., 2001. Areal Distribution, Thickness, Mass, Volume, and Grain Size of Tephra-Fall Deposits from the 1992 Eruptions of Crater Peak Vent, Mt. Spurr Volcano, Alaska. Open-File Report 01-370, U.S.G.S., Alaska Volcano Observatory, Anchorage. Neal, C.A., McGimsey, R.G., Gardner, C.A., Harbin, M.L., Nye, C.J., Keith, T.E.C., 1995. Tephra-fall deposits from the 1992 eruptions of Crater Peak, Mount Spurr Volcano, Alaska; a preliminary report on distribution, stratigraphy, and composition. In: Keith, T.E.C. (Ed.), The 1992 eruptions of Crater Peak Vent, Mount Spurr volcano, Alaska. U. S. Geological Survey, Reston, VA, pp. 65–79. Palmer, T.N., 2000. Predicting uncertainty in forecasts of weather and climate. Rep. Prog. Phys. 63, 71–116. Pfeiffer, T., Costa, A., Macedonio, G., 2005. A model for the numerical simulation of tephra fall deposits. J. Volcanol. Geotherm. Res., 140, 273–294. Prata, A.J.,1989. Infrared radiative transfer calculations for volcanic ash clouds. Geophys. Res. Lett., 16, 1293–1296. Scire, J., Robe, F., Yamartino, R., 2000. A User's Guide for the CALMET Meteorological Model. Tech. Rep. Version 5, Earth Tech, Inc., 196 Baker Avenue, Concord, MA 01742. Searcy, C., Dean, K., Stringer, W., 1998. Puff: a high-resolution volcanic ash tracking model. J. Volcanol. Geotherm. Res. 80, 1–16. Small, C., Naumann, T., 2001. The global distribution of human population and recent volcanism. Environ. Hazards. 3, 93–109. Suzuki, T., 1983. A theoretical model for dispersion of tephra. In: Shimozuru, D., Yokoyama, I. (Eds.), Arc Volcanism: Physics and Tectonics. Terra Scientific Publish- ing Company (TERRAPUB), Tokyo.en
dc.description.obiettivoSpecifico3.6. Fisica del vulcanismoen
dc.description.obiettivoSpecifico4.3. TTC - Scenari di pericolosità vulcanicaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorFolch, A.en
dc.contributor.authorCavazzoni, C.en
dc.contributor.authorCosta, A.en
dc.contributor.authorMacedonio, G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentConsorzio Interuniversitario CINECA, Bologna, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptBarcelona Supercomputing Center, Barcelona, Spain-
crisitem.author.deptCINECA, Interuniversity Computing Centre, Casalecchio di Reno (BO), Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0002-0677-6366-
crisitem.author.orcid0000-0002-4987-6471-
crisitem.author.orcid0000-0001-6604-1479-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
FolCav-08.pdf.pdf3.23 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

24
checked on Feb 10, 2021

Page view(s) 50

209
checked on Apr 20, 2024

Download(s)

33
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric