Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4341
DC FieldValueLanguage
dc.contributor.authorallBerrino, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallCamacho, A. G.; Instituto de Astronomı´a y Geodesia (CSIC-UCM),Spainen
dc.date.accessioned2008-11-26T15:00:14Zen
dc.date.available2008-11-26T15:00:14Zen
dc.date.issued2008en
dc.identifier.urihttp://hdl.handle.net/2122/4341en
dc.description.abstractTo improve our knowledge of the structural pattern of Mt. Vesuvius and its magmatic system, which represents one of the three volcanoes located in the Neapolitan area (together with Campi Flegrei and Ischia; southern Italy), we analyze here the Bouguer gravity map that is already available through its interpretation by means of 2.5-dimensional modelling. We have carried out a three-dimensional interpretation using a new and original algorithm, known as ‘Layers’, that has been especially processed for this purpose. Layers works in an automatic and non-subjective way, and allows the definition of the structural settings in terms of several layers, each representing a specific geological formation. The same data are also interpreted in terms of isolated and shallow anomalous density bodies using a well tested algorithm known as ‘Growth’. We focus our inversions on the Mt. Vesuvius volcano, while globally analyzing the entire Neapolitan area, in order to investigate the deep structures, and in particular the deep extended ‘sill’ that has been revealed by seismic tomography. The final models generally confirm the global setting of the area as outlined by previous investigations, mainly for the shape and depth of the carbonate basement below Mt. Vesuvius. The presence of lateral density contrasts inside the volcano edifice is also shown, which was only hypothesized in the 2.5-dimensional inversion. Moreover, the models allow us to note a high density body that rises from the top of the carbonate basement and further elongates above sea level. This probably represents an uprising of the same basement, which is just below the volcano and which coincides with the VP and VP/VS anomalies detected under the crater. The three-dimensional results also reveal that the two inversion methods provide very similar models, where the high density isolated body in the Growth model can be associated with the rising high density anomaly in the Layers model. Taking into account the density of these modelled bodies, we would also suggest that they represent solidified magma bodies, as suggested by other studies. Finally, we did not clearly detect any deep anomalous body that can be associated with the sill that was suggested by seismic tomography.en
dc.language.isoEnglishen
dc.publisher.nameVerlagen
dc.relation.ispartofPure and Applied Geophysicsen
dc.relation.ispartofseries/165(2008)en
dc.subjectGravityen
dc.subjectBouguer anomalyen
dc.subjectMt. Vesuviusen
dc.subjectthree-dimensional inversionen
dc.title3D Gravity Inversion by Growing Bodies and Shaping Layers at Mt. Vesuvius (Southern Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1095–1115en
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methodsen
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.04. Gravity anomaliesen
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.03. Inverse methodsen
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementationen
dc.identifier.doi10.1007/s00024-008-0348-2en
dc.relation.referencesACHAUER, U., BERRINO, G., CAPUANO, P., and DE GORI, P. (2000), TOMOVES Working Group. Joint inversion of Bouguer gravity and teleseismic delay time data for the Mt. Vesuvius/Campania region’s deeper structure: Idea-strategy-first results, XXV General Assembly of EGS, Nice (France), April 25–29. ACHAUER, U., BERRINO, G., CAPUANO, P., DE NATALE, G., DESCHAMPS, A., CHIARABBA, C., and GASPARINI, P. (1999), Joint interpretation of gravity and seismic tomography data for Mt. Vesuvius, XXII General Assembly of IUGG, Birmingham (UK), July 18–30. AL-CHALABI, M. (1971), Some studies relating to non-uniqueness in gravity and magnetic inverse problem, Geophysics 36 (5), 835–855. AUGER, E., GASPARINI, P., VIRIEUX, J., and ZOLLO, A. (2001), Seismic evidence of an extended magmatic sill under Mt. Vesuvius, Science, 294, 1510–1512. BALDUCCI, S., VASELLINI, M., and VERDIANI, G. (1985). Exploration well in the ‘‘Ottaviano’’ Permit, Italy. In Strub, A.S., Ungemach, P., Eds.), European Geothermal Update, Proc. 3rd Int. Seminar on the Results of EC Geothermal Energy Research, Reidel. BARBERI, F., INNOCENTI, F., LIRER, L., MUNNO, R., PESCATORE, T., and SANTACROCE, R. (1978), The Campanian Ignimbrite: A major prehistoric eruption in the Neapolitan area (Italy), Bull. Volcanol. 41 (1), 1–22. BARBOSA, V.C.F., SILVA, J.B.C., and MEDEIROS, W.E. (1997), Gravity inversion of basements relief using approximate equality constraints on depths, Geophysics 62 (6), 1745–1757. BERRINO, G. (1995), Absolute gravimetry and gradiometry on active volcanoes of Southern Italy, Bollettino di Geofisica Teorica ed Applicata XXXVII (146), 131–144. BERRINO, G., CORRADO, G., and LUONGO, G. (1991), Indagini gravimetriche a mare nelle aree vulcaniche napoletane. In Proc. 14th Annual Meeting of the Gruppo Nazionale di Geofisica della Terra Solida, pp. 763– 775. BERRINO, G., CORRADO, G., and RICCARDI ,U. (1998), Sea gravity data in the Gulf of Naples: A contribution to delineating the structural pattern of the Vesuvian area, J. Volc. Geotherm. Res. 82, 139–150. BERRINO, G., CORRADO, G., RICCARDI, U. (2008), Sea gravity data in the Gulf of Naples: A contribution to delineating the structural pattern of the Campi Flegrei – Ischia sector, J. Volcanol. Geotherm. Res., doi: 10.1016/j.jvolgeores.2008.03.007. BERRINO, G.,MARSON, I., ORLANDO, L., BALESTRI, L., BALIA, R., BONCI, L., BOZZO, E., CARROZZO, M.T., CERUTTI, G., CESI, C., CIMINALE, M., CRESPI, M., DEMARIA, P., FERRI, F., LODDO, M., LUZIO, D., PINNA, E., and ROSSI, A. (1995), Rete gravimetrica Italiana di ordine zero. Stato di avanzamento. In Proc. of the 14th Annual Meeting of the Gruppo Nazionale di Geofisica della Terra Solida, pp. 453–460. CAMACHO, A.G., MONTESINOS, F.G., and VIEIRA, R. (2000), A 3-D gravity inversion by means of a growing bodies, Geophysics, 65(1), 95–101. CAMACHO, A.G., MONTESINOS, F.G., and VIEIRA, R. (2002), A 3-D gravity inversion tool based on exploration of model possibilities, Comp. Geosci. 28, 191–204. CAMELI, G.C., RENDINA, M., PUXEDDU, M., ROSSI, A., SQUARCI, P., and TAFFI, L. (1975), Geothermal Research in Western Campania (Southern Italy). Geological and geophysical results, Proc. 2 U.N. Symp. of Development and Use of Geothermal Resources, San Francisco, CA, pp. 315–328. CARRARA, E., IACOBUCCI, F., PINNA, E., and RAPOLLA, A. (1973), Gravity and magnetic survey of the Campanian volcanic area, Southern Italy, Boll. Geof. Teor. ed Appl. 15, 57, 39–51. CARROZZO, M. T., LUZIO, D., MARGOTTA, C., and QUARTA, T. (1986), Gravity map of Italy, CNR-Progetto Finalizzato Geodinamica. Vol. 165, 2008 3D Gravity Inversion at Mt. Vesuvius 1113 CASSANO, E. and LA TORRE, P. (1987), Geophysics. In (SANTACROCE R., ed.) Somma Vesuvius, CNR, Quad. Ric. Sci. 114 (8), 175–196. CHAKRABORTY, K. and ARGAWAL, B.N.P. (1992), Mapping of crustal discontinuities by wavelength filtering of the gravity field, Geophys. Prospect. 40, 801–822. CIVETTA, L., D’ANTONIO, M., DE LORENZO, S., DI RENZO, V., and GASPARINI, P. (2004), Thermal and geochemical constraints on the ‘deep’ magmatic structure of Mt. Vesuvius, J. Volcanol. Geoth. Res., 133, 1–12. CORTINI, M.R. and SCANDONE, P. (1982), The feeding system of Vesuvius between 1754 and 1944, J. Volcanol. Geotherm. Res. 12, 393–400. CUBELLIS, E., FERRI, M., and LUONGO, G. (1995), Internal structures of Campi Flegrei caldera by gravimetric data, J. Volcanol. Geotherm. Res. 65, 147–156. DE NATALE, G., TROISE, C., TRIGILA, R., DOLFI, D., and CHIARABBA, C. (2004), Seismicity and 3-D substructure at Somma-Vesuvius volcano: Evidence for magma quenching, Earth and Planet. Sci. Lett., 221, 181–196. FERRI, M., CUDELLIS, E., LUONGO, G. (1990), Strutture crostali del graben della Piana Campana da indagini gravimetriche, Proc. XI Meeting G.N.G.T.S., C.N.R., I, 737–747. FEDI, M. (1988), Spectral expansion inversion of gravity data for 2 D stuctures, Boll. Geof. Teor. Appl. 21 (121), 25–39. FINETTI, I. and DEL BEN, A. (1986) Geophysical study of the tyrrhenian opening. Boll. Geof. Teor. Appl. XXVIII (11), 75–155. FINETTI I. and MORELLI C. (1974) Esplorazione di sismica a riflessione dei Golfi di Napoli e Pozzuoli. Boll. di Geof. Teor. Appl. 16, 62–63. GALLARDO-DELGADO, L.A., PEREZ-FLORES, M.A., and GOMEZ-TREVINO, E. (2003), A versatile algorithm for joint inversion of gravity and magnetic data, Geophysics 68, 949–959. Go¨TZE, H.-J. and LAHMEYER, B. (1988), Application of three-dimensional interactive modeling in gravity and magnetics, Geophysics Vol. 53, No. 8, 1096–1108. LUONGO, G., FERRI, M., CUBELLIS, E., GRIMALDI, M., and ORBIZZO, F. (1988), Struttura superficiale della Piana Campana: Interpretazione del profilo Garigliano-Campi Flegrei. Atti del VII Convegno Nazionale G.N.G.T.S., C.N.R., 1121–1128. MARZOCCHI, W., SCANDONE, R., and MULARGIA, F. (1993), The tectonic setting of Mount Vesuvius and the correlation between its eruptions and earthquakes of the Southern Appennines, J. Volcanol. Geotherm. Res. 58, 27–41. MORITZ, H. (1984), Geodetic reference system 1980, In (Tscherning, ed.), The Geodesist ’ s Handbook. C.C. Bull. Geod. 58, 388–398. NUNZIATA, C., NATALE, M., LUONGO, G., and PANZA, G.F. (2006), Magma reservoir at Mt. Vesuvius: Size of the hot, partially molten, crustal material detected depper than 8 km, Earth and Planet. Sci. Lett., 242, 51–57. OLIVERI DEL CASTILLO, A. (1966). Some gravimetric considerations on the Campanian eruptive and sedimentary basin (residual anomalies of (n-1)th order. Annali Oss. Ves., S VI, VIII, 112–137. PEDERSEN, L.B. (1979), Constrained inversion of potential field data, Geophys. Prospect. 27, 726–748. PICK, M., PICHA, J., and VYSKoˆCIL, V., Theory of the Earth´s gravity field (Elsevier, New York (1973)) 538 pp. RADHAKRISHNA MURTHY, I.V. and JAGANNADHA RAO, S. (1989), A FORTRAN 77 program for inverting gravity anomalies of two-dimensional basement structures, Comp. Geosci., 15-7, 1149–1156. RAMA RAO, P., SWAMY, K.V., and RADHAKRISHNA MURTHY, I.V. (1999), Inversion of gravity anomalies of threedimensional density interface, Comp. Geosci. 25, 887–896. RENE´ , R.M. (1986), Gravity inversion using open, reject, and ‘‘shape-of-anomaly’’ fill criteria, Geophysics 51, 4, 988–994. ROSI, M., SANTACROCE, R., and SHERIDAN, M.F. (1987), Volcanic hazard. In Somma Vesuvius, (ed. R. Santacroce) Quad. Ric. Sci. 114, 197–220. ROTHMAN, D.H. (1985), Nonlinear inversion, statistical mechanics, and residual statics estimation, Geophysics 50(12), 2784–2796. ROUSSEEUW, P.J. and LEROY, A.M., Robust Regression and Outlier Detection (John Wiley & Sons, New York (1987)) 327 pp. SANTACROCE, R. (1987), Somma-Vesuvius, Quaderni de ‘‘La ricerca Scientifica’’ C.N.R. 114(8), 251. SCALA, O. (2002), Assetto strutturale della Piana Campana dall’analisi di dati gravimetrici, Ph.D Thesis in Geophysics and Volcanology, University of Naples, Tutors: Corrado G. and Berrino G., Naples. 1114 G. Berrino and A. G. Camacho Pure appl. geophys., SILVA, J.B.C. and HOHMANN, G.W. (1983), Nonlinear magnetic inversion using a random search method, Geophysics, 46(12), 1645–1658. TARANTOLA, A., The inverse problem theory: Methods for data fitting and model parameter estimation (Elsevier, Amsterdam (1988)) 613 pp. TONDI, R., and DE FRANCO, R. (2003), Three-dimensional modeling of Mount Vesuvius with sequential integrated inversion, J. Geophys. Res. 108(B5), 2256, doi:10.1029/2001JB001578. TONDI, R., and DE FRANCO, R. (2006), Accurate assessment of 3D crustal velocity and density parameters: Application to Vesuvius data sets, Phys. Earth Planet. Interiors, 159, 183–201. WON, J. and BEVIS, M. (1987), Computing the gravitational and magnetic anomalies due to a polygon: Algorithms and Fortran subroutines, Geophysics 52, (2), 232–238. ZOLLO, A., GASPARINI, P., VIRIEUX, J., DE NATALE, G., BIELLA, G., BOSCHI, E., CAPUANO, P., DE FRANCO, R., DELL’AVERSANA, P., DE MATTEIS, R., GUERRA, I., IANNACCONE, G., LE MEUR, H., MIRABILE, L., and VILARDO, G. (1996), Seismic evidence for a low velocity zone in the upper crust beneath Mt. Vesuvius, Science 274(5287), 592–594.en
dc.description.obiettivoSpecifico2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attiveen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorBerrino, G.en
dc.contributor.authorCamacho, A. G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentInstituto de Astronomı´a y Geodesia (CSIC-UCM),Spainen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptInstituto de Astronomía y Geodesia, CSIC‐UCM, Madrid, Spain.-
crisitem.author.orcid0000-0002-4703-2435-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
BerCam-08.pdf1.33 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

11
checked on Feb 10, 2021

Page view(s) 50

235
checked on Apr 17, 2024

Download(s)

50
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric