Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4324
DC FieldValueLanguage
dc.contributor.authorallMarzorati, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Milano-Pavia, Milano, Italiaen
dc.contributor.authorallBindi, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Milano-Pavia, Milano, Italiaen
dc.date.accessioned2008-11-26T10:57:16Zen
dc.date.available2008-11-26T10:57:16Zen
dc.date.issued2008-06en
dc.identifier.urihttp://hdl.handle.net/2122/4324en
dc.description.abstractIn this note, we investigate the characteristics of ambient noise cross-correlations for station pairs in northern Italy, considering the secondary microseism bandwidth (0.1-0.6 Hz). The preliminary analysis that we performed exploiting the available continuous recording in the investigated area, agrees with the recent results of Pedersen et al. (2007): the directionality of the noise signal cannot be disregarded when the group velocity is estimated in the range 0.1-0.6 Hz and the selection of the path orientation for tomography must be carefully performed. In particular, while the favourable directions with respect to microseisms generated along the Atlantic coasts of France, Norway and British Islands cover a quite wide azimuthal range (from about 270N to 5N), allowing us to reliably estimate the fundamental mode Rayleigh group velocity for paths in the Alps (about 2.7 km/s), more care must be taken when the microseisms are generated in the Mediterranean Sea. In that case, different locations of the generating areas of microseisms could provide biased estimates of the group velocity due to differences between the true and the apparent velocity of propagation between the stations.en
dc.language.isoEnglishen
dc.publisher.nameSeismological Society of Americaen
dc.relation.ispartofBulletin Seismological Society of Americaen
dc.relation.ispartofseries3/98(2008)en
dc.relation.isversionofhttp://hdl.handle.net/2122/3454en
dc.subjectmicroseismsen
dc.subjectambient noiseen
dc.titleCharacteristics of Ambient Noise Cross-Correlations in Northern Italy within the 0.1- to 0.6-Hz Frequency Rangeen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1389-1398en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoringen
dc.identifier.doi10.1785/0120070140en
dc.relation.referencesAmorosi, A., M. Farina, P. Severi, D. Preti, L. Caporale, and G. Di Dio (1996). Genetically related alluvial deposits across active fault zones: an example of alluvial fan-terrace correlation from the upper Quaternary of the southern Po Basin, Italy, Sediment. Geol., 102, 274–295. Bensen, G.D., M.P. Barmin, A.L. Levshin, F. Lin, M.P. Moschetti, N.M. Shapiro, Y. Yang, and M.H. Ritzwoller (2007). Processing ambient noise seismic data to obtain reliable broadband surface wave dispersion measurements, Geophys. J. Int 169, 1239-1260, doi: 10.1111/j.1365-246X.2007.03374.x. Bock, G. and the SVEKALAPKO Seismic Tomography Working Group (SSTWG) (2001). Seismic Probing of the Fennoscandian Lithosphere, EOS, Trans. Am. geophys. Un., 82, 621, 628–629. Bromirski, P. D., and F. K. Duennebier (2002). The near-coastal microseism spectrum: Spatial and temporal wave climate relationships, J. Geophys. Res., 107(B8), 2166, doi:10.1029/2001JB000265. Bromirski, P. D., F. K. Duennebier, and R. A. Stephen (2005). Mid-ocean microseisms, Geochem. Geophys. Geosys., 6, Q04009, doi:10.1029/2004GC000768 Cho, K. H., R. B. Herrmann, C. J. Ammon, and K. Lee (2007). Imaging the Upper Crust of the Korean Peninsula by Surface-Wave Tomography, Bull. Seism. Soc. Am.,97, 198-207, doi: 10.1785/0120060096 Essen, H.-H., F. Krüger, T. Dahm, and I. Grevemeyer (2003). On the generation of secondary microseisms observed in northern and central Europe, J. geophys. Res., 108(B10), 2506, doi:10.1029/2002JB002338. Friedrich, A., F. Krüger, and K. Klinge (1998). Ocean generated microseismic noise located with the Gräfenberg array, J. Seismol., 2, 47-64. Gerstoft, P., K.G. Sabra, P. Roux, W.A. Kuperman, and M.C. Fehler (2006). Green’s functions extraction and surface-wave tomography from microseisms in southern California, Geophysics, 71, 4, 23-32. Lin, F-C, M. H. Ritwoller, J. Townend, S. Bannister, and M. K. Savage (2007). Ambient noise Rayleigh wave tomography of New Zealand, Geophys. J. Int., 170, 649-666, doi: 10.1111/j.1365-246X.2007.03414x. Longuet-Higgins, M. S. (1950). A theory of the origin of microseisms, Philos. Trans. R. Soc. London, Ser A, 243, 2-36. Marzorati, S., and D. Bindi (2006). Ambient noise levels in north central Italy, Geochem. Geophys. Geosys., 7, Q09010, doi:10.1029/2006GC001256. McNamara D.E., and R. P. Buland (2004). Ambient Noise Levels in the Continental United States, Bull. Seism. Soc. Am., 94, 1517-1527. Pedersen, H. A., F. Krüger and the SVEKALAPKO Seismic Tomography Working Group (2007). Influence of the seismic noise characteristics on noise correlations in the Baltic shield, Geophys. J. Int.,168, 197–210. doi: 10.1111/j.1365-246X.2006.03177.x. Pieri, M., and G. Groppi (1981). Subsurface geological structure of the Po Plain, in Progetto Finalizzato Geodinamica, 23 pp., C.N.R., Italy. Sabra, K.G., P. Gerstoft, P. Roux, W.A. Kuperman, and M.C. Fehler (2005a). Extracting time-domain Green’s function estimates from ambient seismic noise, Geophys. Res. Lett., 32, L03310, doi:10.1029/2004GL021862. Sabra, K.G., P. Gerstoft, P. Roux, W.A. Kuperman, and M.C. Fehler (2005b). Surface wave tomography from microseisms in Southern California, Geophys. Res. Lett., 32, L14311, doi:10.1029/2005GL023155. Shapiro, N.M. and M. Campillo (2004). Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise, Geophys. Res. Lett., 31, L07614, doi:10.1029/2004GL019491. Shapiro, N.M., M. Campillo, L. Stehly, and Ritzwoller, M. (2005). High resolution surface wave tomography from ambient seismic noise, Science, 307, 1615–1618. Stephen, R. A., F. N. Spiess, J. A. Collins, J. A. Hildebrand, J. A. Orcutt, K. R. Peal, F. L. Vernon, and F.B. Wooding (2003). Ocean seismic network pilot experiment, Geochem. Geophys. Geosys., 4 (10), 1092, doi:10.1029/2002GC000485. Tanimoto T., S. Ishimaru and C. Alvizuri (2006). Seasonality in particle motion of microseisms, Geophys. J. Int., 166, 253-266. Tolman, H.L. (1991). A third-generation model for wind waves on slowly varying, unsteady and inhomogeneous depths and currents. J. Phys. Oceanogr., 21, 782-797. Webb, S.C. (1998). Broadband seismology and noise under the ocean, Reviews of Geophysics, 36, 105-142. Yang, Y., M. H. Ritzwoller, A. L. Levshin and N. M. Shapiro (2007). Ambient noise Rayleigh wave tomography across Europe, Geophys. J. Int., 168, 259–274, doi: 10.1111/j.1365-246X.2006.03203.x. Yao, H., R.D. van der Hilst, and M.V. De Hoop (2006). Surface-wave array tomography in SE Tibet from ambient seismic noise and two station analysis: I—Phase velocity maps, Geophys. J. Int., 166, 732–744.en
dc.description.obiettivoSpecifico1.1. TTC - Monitoraggio sismico del territorio nazionaleen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorMarzorati, S.en
dc.contributor.authorBindi, D.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.orcid0000-0002-5803-4882-
crisitem.author.orcid0000-0002-8619-2220-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
MarzoratiBindi_BSSA2008.pdfMain article1.12 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

14
checked on Feb 7, 2021

Page view(s) 50

169
checked on Apr 13, 2024

Download(s)

24
checked on Apr 13, 2024

Google ScholarTM

Check

Altmetric