Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4270
DC FieldValueLanguage
dc.contributor.authorallCianetti, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallTinti, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallGiunchi, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallCocco, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2008-11-25T09:01:18Zen
dc.date.available2008-11-25T09:01:18Zen
dc.date.issued2008-08en
dc.identifier.urihttp://hdl.handle.net/2122/4270en
dc.description.abstractThe Gulf of Corinth is one of the most active extensional regions in the Mediterranean area characterized by a high rate of seismicity. However, there are still open questions concerning the role and the geometry of the numerous active faults bordering the basin, as well as the mechanisms governing the seismicity. In this paper, we use a 2-D plane strain finite element analysis to constrain the upper crust rheology by modelling the available deformation data (GPS and geomorphology). We consider a SSW–NNE cross-section of the rift cutting the main active normal faults (Aigion, West Eliki and Off-Shore faults). The models run for 650 Kyr assuming an elasto-viscoplastic rheology and 1.3 cm yr−1 horizontal extension as boundary condition (resulting from GPS data). We model the horizontal and vertical deformation rates and the accumulation of plastic strain at depth, and we compare them with GPS data, with long term uplift rates inferred from geomorphology and with the distribution of seismicity, respectively. Our modelling results demonstrate that dislocation on high-angle normal faults in a plastic crustal layer plays a key role in explaining the extremely localized strain within the Gulf of Corinth. Conversely, the contribution of structures such as the antithetic Trizonia fault or the buried hypothetical subhorizontal discontinuity are not necessary to model observed data.en
dc.language.isoEnglishen
dc.publisher.nameBlackwellen
dc.relation.ispartofGeophysical Journal Internationalen
dc.relation.ispartofseries2/174 (2008)en
dc.subjectNumerical solutionsen
dc.subjectPlasticity, diffusion, and creepen
dc.subjectRheology and friction of fault zonesen
dc.subjectContinental tectonics: extensionalen
dc.subjectDynamics and mechanics of faultingen
dc.subjectRheology: crust and lithosphereen
dc.titleModeling deformation rates in the Western Gulf of Corinth: rheological constraintsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber749-757en
dc.identifier.URLhttp://www3.interscience.wiley.com/journal/120123656/abstracten
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Modelsen
dc.identifier.doi10.1111/j.1365-246X.2008.03845.xen
dc.relation.referencesAA.VV., 2005. Theory and Users Information, Palo Alto, CA. Albert, R.A. & Phillips, R.J., 2002. Time-dependent effects in elastoviscoplastic models of loaded lithosphere, Geophys. J. Int., 151, 612–621. Avallone, A. et al., 2004. Analysis of eleven years of deformation measured by GPS in the Corinth Rift Laboratory area, Compt. Rendus Geosci., 336, 301–311, doi:10.1016/j.crte.2003.12.007. Baker, C., Hatzfeld, D., Lyon-Caen, H., Papadimitriou, E. & Rigo, A., 1997. Earthquake mechanisms of the Adriatic Sea andWestern Greece: implications for the oceanic subduction-continental collision transition, Geophys. J. Int., 131, 559–594. Bernard, P. et al., 2006. Seismicity, deformation and seismic hazard in the western rift of Corinth: new insights from the Corinth Rift Laboratory (CRL), Tectonophysics, 426, 7–30, doi:10.1016/j.tecto.2006.02.012. Briole, P. et al., 2000. Active deformation of the Corinth Rift, Greece: results from repeated Global Positioning System survey between 1990 and 1995, J. geophys. Res., 105, 25 605–25 625. Brown, C.D. & Phillips, R.J., 2000. Crust–mantle decoupling by flexure of continental lithosphere, J. geophys. Res., 105, 13 221–13 237. Chery, J., 2001. Core complex mechanics: from the Gulf of Corinth to the Snake Range, Geology, 29, 439–442. Cornet, F.H., Doan, M.L., Moretti, I.&Borm, G., 2004. Drilling through the Aigion fault: the AIG10 well observatory, Compt. Rendus Geosci., 336, 395–406, doi:10.1016/j.crte.2004.02.002. De Martini, P.M., Pantosti, D., Palyvos, N., Lemeille, F., McNeill, L. & Collier R., 2004. Slip rates of the Aigion and Eliki faults from uplifted marine terraces, Corinth Gulf, Greece, Compt. Rendus Geosci., 336, 325–334, doi:10.1016/j.crte.2003.12.006. Doan, L.M. & Cornet, F.H., 2007. Thermal anomaly near the Aigio Fault, Gulf of Corinth, Greece, maybe due to convection below the fault, Geophys. Res. Lett., 34, L06314, doi:10.1029/2006GL028931. Engelder, T., 1993. Stress Regimes in the Lithosphere, Princeton University Press, Princeton, NJ. Fialko, Y., 2004. Evidence of fluid–filled upper crust from observations of post–seismic deformation due to the 1992 Mw 7.3 Landers earthquake, J. geophys. Res., 109, B08401, doi:10.1029/2003JB001985. Hamiel, Y., Liu, Y., Lyakhovsky, V., Ben-Zion, Y. & Lockner, D., 2004. A viscoelastic damage model with application to stable and unstable fracturing, Geophys. J. Int., 159, 1155–1165, doi:10.1111/j.1365-246X.2004.02452.x. Harzfeld, D., Karakostas, V., Ziazia, M., Kassaras, I., Papadimitriou, E., Makropoulos, K., Voulgaris, N. & Papaioannou, C., 2000. Microseismicity and faulting geometry in the Gulf of Corinth (Greece), Geophys. J. Int., 141, 438–456. J´onsson, S., Segall, P., Pedersen, R. & Bj¨ornsson, G., 2003. Post–earthquake ground movements correlated to pore-pressure transients, Nature, 424, 179–183. Latorre, D., Virieux, J., Monfret, T., Monteiller, V., Vanorio, T., Got, J.L. & Lyon-Caen, H., 2004. A new seismic tomography of Aigion area (Gulf of Corinth, Greece) from the 1991 data set, Geophys. J. Int., 159, 1013–1031, doi:10.1111/j.1365-246X.2004.02412.x. Le Pourhiet, L., Burov, E. & Moretti, I., 2004. Rifting through a stack of inhomogeneous thrusts (the dipping pie concept), Tectonics, 23, TC4005, doi:10.1029/2003TC001584. McNeill, L.&Collier, R.E. LL., 2004. Uplift and slip rate of the eastern Eliki fault segment, Gulf of Corinth, inferred from Holocene and Plesticene terraces, J. geol. Soc., 161, 81–92. McNeill, L. et al., 2005. Activity faulting within the offshorewestern Gulf of Corinth, Greece: implications for models of continental rift deformation, Geology, 33, 241–244, doi:10.1130/G21127.1. McNeill, L., Cotterill, C.J., Bull, J.M., Henstock, T.J., Bell, R. & Stefatos, A., 2007. Geometry and slip rate of the Aigion fault, a young normal fault system in the western Gulf of Corinth, Geology, 35, 355–358, doi:10.1130/G23281A.1. Miller, S.A., Collettini, C., Chiaraluce, L., Cocco, M., Barchi, M. & Kaus, B.J.P., 2004. Aftershocks driven by a high-pressure CO (sub 2) source at depth, Nature, 427, 724–727. Moretti, I., Sakellariou, D., Lykousis, V. & Micarelli, L., 2003. The Gulf of Corinth: an active half graben? J. Geodyn., 36, 323–340. Palyvos, N., Pantosti, D., De Martini, P.M., Lemeille, F., Sorel, D. & Pavlopoulos, K., 2005. The Aigion-Neos Erineos coastal normal fault system (Western Corinth Gulf rift, Greece): geomorphological signature, recent earthquake history and evolution, J. geophys. Res., 110, B09302, doi:10.1029/2004JB003165. Pantosti, D., De Martini, P.M., Koukouvelas, I., Stamatopoulos, L., Palyvos, N., Pucci, S., Lemeille, F. & Pavlides, S., 2004. Compt. Rendus Geosci., 336, 335–342, doi:10.1016/j.crte.2003.12.005. Poliakov, A.N.B., Dmowska, R. & Rice, J.R., 2002. Dynamic shear rupture interactions with fault bends and off-axis secondary faulting, J. geophys. Res., 107, doi:10.1029/2001JB000572. Rigo, A., Lyon-Caen, H., Armijo, R., Deshamps, A., Harzfeld, D., Makropoulos, K., Papadimitriou, P. & Kassaras, I., 1996. A microseismic study in the western part of the Gulf of Corinth (Greece): implications for large-scale normal faulting mechanisms, Geophys. J. Int., 126, 663–688. Sorel,D., 2000.APleistocene and still-active detachment fault and the origin of the Corinth-Patras rift, Greece, Geology, 128(1), 83–86. Sulem, J., 2007. Stress orientation valuated from localisation analysis in Aigion Fault, Tectonophysics, 442, 3–13, doi: 10.1016/j.TECTO.2007.03.00 Tiberi, C., Diament, M., Lyon-Caen, H. & King, T., 2001. Moho topography beneath the Corinth Rift area (Greece) from inversion of gravity data, Geophys. J. Int., 145(3), 797–808. Turcotte, D. L. & Schubert, G., 1982. Geodynamics - Application of Continuum Physics to Geological Problems, Wiley, New York. Wilks, K.R. & Carter, N.L., 1990. Rheology of some continental lower crustal rocks, Tectonophysics, 182, 57–77. Zelt, B.C., Taylor, B., Sachpazi, M. & Hirn, A., 2005. Crustal velocity and Moho structure beneath the Gulf of Corinth, Greece, Geophys. J. Int., 162(1), 257–268.en
dc.description.obiettivoSpecifico3.3. Geodinamica e struttura dell'interno della Terraen
dc.description.journalTypeJCR Journalen
dc.description.fulltextpartially_openen
dc.contributor.authorCianetti, S.en
dc.contributor.authorTinti, E.en
dc.contributor.authorGiunchi, C.en
dc.contributor.authorCocco, M.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0002-0690-7274-
crisitem.author.orcid0000-0002-6942-3592-
crisitem.author.orcid0000-0002-0174-324X-
crisitem.author.orcid0000-0001-6798-4225-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2008GJIcorinto.pdfmain article419.13 kBAdobe PDF
corinto.pdfmanuscript latest version519.24 kBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

10
checked on Feb 10, 2021

Page view(s)

409
checked on Apr 20, 2024

Download(s) 20

314
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric