Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4074
DC FieldValueLanguage
dc.contributor.authorallRochette, P.; CEREGE, CNRS Aix-Marseille Université, BP80 13545, Aix en Provence, Cedex 4, Franceen
dc.contributor.authorallGattacceca, J.; Laboratoire de Planétologie de Grenoble, Université Joseph Fourier, Grenoble, Franceen
dc.contributor.authorallBonal, L.; Laboratoire de Planétologie de Grenoble, Université Joseph Fourier, Grenoble, Franceen
dc.contributor.authorallBourotte-Denise, M.; Muséum National d’Histoire Naturelle, LEME, Paris, Franceen
dc.contributor.authorallChevrier, V.; CEREGE, CNRS Aix-Marseille Université, BP80 13545, Aix en Provence, Cedex 4, Franceen
dc.contributor.authorallClerc, J.-P.; IUSTI /CNRS Ecole Polytechnique Universitaire de Marseille, Franceen
dc.contributor.authorallConsolmagno, G.; Specola Vaticana, Vatican City Stateen
dc.contributor.authorallFolco, L.; Museo Nazionale dell’Antartide, Università di Siena, Italyen
dc.contributor.authorallGounelle, M.; Muséum National d’Histoire Naturelle, LEME, Paris, Franceen
dc.contributor.authorallKohout, T.; University of Helsinki, Helsinki, Finlanden
dc.contributor.authorallPesonen, L.; University of Helsinki, Helsinki, Finlanden
dc.contributor.authorallQuirico, E.; Laboratoire de Planétologie de Grenoble, Université Joseph Fourier, Grenoble, Franceen
dc.contributor.authorallSagnotti, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallSkripnik, A.; Vernadsky Institute, Moscow, Russiaen
dc.date.accessioned2008-09-18T09:54:42Zen
dc.date.available2008-09-18T09:54:42Zen
dc.date.issued2008-09en
dc.identifier.urihttp://hdl.handle.net/2122/4074en
dc.description.abstractA database of magnetic susceptibility (χ) measurements on different non-ordinary chondrites (C, E, R, and ungrouped) populations is presented and compared to our previous similar work on ordinary chondrites. It provides an exhaustive study of the amount of iron-nickel magnetic phases (essentially metal and magnetite) in these meteorites. In contrast with all the other classes, CM and CV show a wide range of magnetic mineral content, with a two orders of magnitude variation of χ. Whether this is due to primary parent body differences, metamorphism or alteration, remains unclear. C3–4 and C2 yield similar χ values to the ones shown by CK and CM, respectively. By order of increasing χ, the classes with well-grouped χ are: R << CO < CK ≈ CI < Kak < CR < E ≈ CH < CB. Based on magnetism, EH and EL classes have indistinguishable metal content. Outliers that we suggest may need to have their classifications reconsidered are Acfer 202 (CO), Elephant Moraine (EET) 96026 (C4–5), Meteorite Hills (MET) 01149, and Northwest Africa (NWA) 521 (CK), Asuka (A)-88198, LaPaz Icefield (LAP) 031156, and Sahara 98248 (R). χ values can also be used to define affinities of ungrouped chondrites, and propose pairing, particularly in the case of CM and CV meteorites.en
dc.language.isoEnglishen
dc.publisher.nameThe Meteoritical Societyen
dc.relation.ispartofMeteoritics & Planetary Scienceen
dc.relation.ispartofseries5 / 43 (2008)en
dc.subjectmeteoritesen
dc.subjectchondritesen
dc.subjectmagnetic susceptibilityen
dc.titleMagnetic classification of stony meteorites: 2. Non-ordinary chondritesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber959-980en
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetismen
dc.relation.referencesBevan A. W. and Binns R. A. 1989. Meteorites from the Nullarbor region, Western Australia: II. Recovery and classification of 34 new meteorite finds from the Mundrabilla, Forrest, Reid, and Deakin areas. Meteoritics 24:135–141. Bhandari N., Shah V. B., and Wasson J. T. 1980. The Parsa enstatite chondrite. Meteoritics 15:225–233. Bonal L., Quirico E., Bourot-Denise M., and Montagnac G. 2006. Determination of the petrologic type of CV3 chondrites by Raman spectroscopy of included organic matter. Geochimica et Cosmochimica Acta 70:1849–1863. Bonal L., Quirico E., Bourot-Denise M., and Lewin E. 2007. Organic matter and metamorphic history of CO chondrites. Geochimica et Cosmochimica Acta 71:1605–1623. Bourot-Denise M., Zanda B., and Javoy M. 2002. Tafassasset: An equilibrated CR chondrite (abstract #1611). 33rd Lunar and Planetary Science Conference. CD-ROM. Brandstätter F. and Kurat G. 2006. Unusual weathering effects in the EL6 chondrite Northwest Africa 4282 (abstract). Meteoritics & Planetary Science 41:A28. Brearley A. J. and Jones R. H. 1998. Chondritic meteorites. In Planetary materials, chapter 4, edited by Papike J. J. Reviews in Mineralogy and Geochemistry, vol. 36. Washington, D.C.: Mineralogical Scoiety of America. p. 370. Brecher A. and Arrhenius G. 1974. The paleomagnetic record in carbonaceaous chondrites: natural remanence and magnetic properties. Journal of Geophysical Research 79:2081–2106. Britt D. T. and Consolmagno G. J. 2003. Stony meteorite porosities and densities: A review of the data through 2001. Meteoritics & Planetary Science 38:1161–1180. Browning L. B., McSween H. Y., and Zolensky M. E. 1996. Correlated alteration effects in CM carbonaceous chondrites. Geochimica et Cosmochimica Acta 60:2621–2633. Carmichael R. S. 1989. Practical handbook of physical properties of rocks and minerals. Boca Raton, Florida: CRC Press. 741 p. Clayton R. N. and Mayeda T. K. 1999a. Links among CI and CM chondrites (abstract #1795). 30th Lunar and Planetary Science Conference. CD-ROM. Clayton R. N. and Mayeda T. K. 1999b. Oxygen isotope studies of carbonaceous chondrites. Geochimica et Cosmochimica Acta 63: 2089–2104. Coey J. M. D., Roux-Buisson H., and Brussetti R. 1976. The electronic phase transitions in FeS and NiS. Chapter 4 in Metalnon metal transitions in transition metal compounds. Journal de Physique Colloques 37:C4. pp. 1–10. Dekkers M. J. 1988. Magnetic properties of natural pyrrhotite part I: Behaviour of initial susceptibility and saturation magnetization related rock magnetic parameters in a grain size dependent framework. Physics of the Earth and Planetary Interiors 52:376– 393. Endress M., Keil K., Bischoff A., Spettel B., Clayton R. N., and Mayeda T. K. 1994. Origin of dark clasts in the Acfer 059/El Djouf 001 CR2 chondrite. Meteoritics 29:26–40. Folco L., Rochette P., Gattacceca J., and Perchiazzi N. 2006. In situ identification, pairing, and classification of meteorites from Antarctica by magnetic methods. Meteoritics & Planetary Science 41:343–353. Gastineau-Lyons H. K., McSween H. Y., and Gaffey M. J. 2002. A critical evaluation of oxidation versus reduction during metamorphism of L and LL group chondrites, and implications for asteroid spectroscopy. Meteoritics & Planetary Science 37: 75–90. Gattacceca J. and Rochette P. 2004. Toward a robust paleointensity estimate for meteorites. Earth and Planetary Science Letters 227: 377–393. Gattacceca J., Eisenlohr P., and Rochette P. 2004. Calibration of in situ magnetic susceptibility measurements. Geophysical Journal International 158:42–49. Gattacceca J., Rochette P., Denise M., Consolmagno G., and Folco L. 2005. An impact origin for the foliation of ordinary chondrites. Earth and Planetary Science Letters 234:351–368. Gattacceca J., Bourot-Denise M., Brandstaetter F., Folco L., and Rochette P. 2007. The Asco meteorite (1805): New petrographic description, chemical data, and classification. Meteoritics & Planetary Science 42:A173–A176. Geiger T. and Bischoff A. 1995. Formation of opaques minerals in CK chondrites. Planetary and Space Sciences 43:485–498. Grady M. 2000. Catalogue of meteorites, 5th edition. Cambridge: Cambridge University Press. 689 pp. Greenwood R. C., Franchi I. A., Kearsley A. T., and Alard O. 2004. The relationship between CK and CV chondrites: A single parent body source (abstract #1664). 34th Lunar and Planetary Science Conference. CD-ROM. Gounelle M. and Zolensky M. E. 2001. A terrestrial origin for sulfate veins in CI1 chondrites. Meteoritics & Planetary Science 36: 321–1329. Heider F., Zitzelsberger A., and Fabian K. 1996. Magnetic susceptibility and remanent coercive force in grown magnetite crystals from 0.1 μm to 6 mm. Physics of the Earth and Planetary Interiors 93:239–256. Herndon J. M., Rowe M. W., Larson E. E., and Watson D. E. 1976. Thermomagnetic analysis of meteorites, 3. C3 and C4 chondrites. Earth and Planetary Science Letters 29:283–290. Hyman M. and Rowe M. W. 1986. Saturation magnetization measurements of carbonaceaous chondrites. Meteoritics 21:1–22. Jarosewich E. 1990. Chemical analysis of meteorites: Compilation of stony and iron meteorite analyses. Meteoritics 25:323–337. Kallemeyn G. W., Rubin A. E., and Wasson J. T. 1996. The compositional classification of chondrites: VII. The R-chondrite group. Geochimica et Cosmochimica Acta 60:2243–2256. Kohout T., Elbra T., Pesonen L. J., Schnabl P., and Slechta S. 2006. Applications of the meteorite physical properties data obtained using mobile laboratory facility (abstract). Meteoritics & Planetary Science 41:A98. Kong P., Mori T., and Ebihara M. 1997. Compositional continuity of enstatite chondrites and implications for heterogeneous accretion of the enstatite parent body. Geochimica et Cosmochimica Acta 61:4895–4914. Krot A. N., Meibom A., Weisberg M. K., and Keil K. 2002. The CR chondrite clan: Implications for early solar system processes. Meteoritics & Planetary Science 37:1451–1490. Krot A. N., Petaev M. I., and Bland P. A. 2003. Growth of ferrous olivine in the oxidized CV chondrites during fluid-assisted thermal metamorphism (abstract). Meteoritics & Planetary Science 38:A73. Krot A. N., Keil K., Goodrich C. A., Scott E. R. D., and Weisberg M. K. 2005. Classification of meteorites. In Meteorites, comets, and planets, edited by Davis A. M. Treatise on Geochemistry, vol. 1. Amsterdam: Elsevier. pp. 83–128. Larson E. E., Watson D. E., Herndon J. M., and Rowe M. W. 1974. Thermomagnetic analysis of meteorites, 1. C1 chondrites. Earth and Planetary Science Letters 21:345–350. Latham A. G., Harding K. L., Lapointe P., Morris W. A., and Balch S. J. 1989. On the log normal distribution of oxides in rocks, using magnetic susceptibility as a proxy for oxide mineral concentration. Geophysical Journal International 96:179– 184. Lecoanet H., Leveque F., and Segura S. 1999. Magnetic susceptibility in environmental application: Comparison of field probes. Physics of the Earth and Planetary Interiors 115:191–204. McSween H. Y. Jr. 1977. Petrographic variations among carbonaceaous chondrites of the Vigarano type. Geochimica et Cosmochimica Acta 41:1777–1790. Menzies O. N., Bland P. A., Berry F. J., and Cressey G. 2005. A Mössbauer spectroscopy and X-ray diffraction study of ordinary chondrites: Quantification of modal mineralogy and implications for redox conditions during metamorphism. Meteoritics & Planetary Science 40:1023–1042. Nagata T. 1979. Meteorite magnetism and the early solar system magnetic field. Physics of the Earth and Planetary Interiors 20:324–341. Pesonen L. J., Terho M., and Kukkonen I. 1993. Physical properties of 368 meteorites. Implications for meteorite magnetism and planetary geophysics. Proceedings of the NIPR Symposium on Antarctic Meteorites 6:401–406. Quirico E., Raynal P. I., and Bourot-Denise M. 2003. Metamorphic grade of organic matter in six unequilibrated ordinary chondrites. Meteoritics & Planetary Science 38:795–811. Rochette P. 1987. Magnetic susceptibility of the rock matrix related to magnetic fabric studies. Journal of Structural Geology 9: 1015–1020. Rochette P., Sagnotti L., Consolmagno G., Folco L., Maras A., Panzarino F., Pesonen L., Serra R., and Terho M. 2001a. A magnetic susceptibility database for stony meteorites. Quaderni di Geofisica 18:24. Rochette P., Lorand J. P., Fillion G., and Sautter V. 2001b. Pyrrhotite and the remanent magnetization of SNC meteorites: A changing perspective on Martian magnetism. Earth and Planetary Science Letters 190:1–12. Rochette P., Gattacceca J., Menvielle P., Eisenlohr P., and Chevrier V. 2004. Interest and design of magnetic properties measurements on planetary and asteroidal landers. Planetary and Space Science 52:987–995. Rochette P., Sagnotti L., Bourot-Denise M., Consolmagno G., Folco L., Gattacceca J., Osete M. L., and Pesonen L. 2003. Magnetic classification of stony meteorites: 1. Ordinary chondrites. Meteoritics & Planetary Science 38:251–268. Rochette P., Gattacceca J., Chevrier V., Hoffmann V., Lorand J. P., Funaki M., and Hochleitner R. 2005. Matching Martian crustal magnetization and meteorite magnetic properties. Meteoritics & Planetary Science 40:529–540. Rubin A. E. 1997. Mineralogy of meteorite groups—An update. Meteoritics & Planetary Science 32:733–734. Rumble D. III, Irving A. J., Kuehner S. M., and Bunch T. E. 2007. Supra-TFL oxygen isotopic compositions in metal-poor “ordinary” chondrites: Samples from unrecognized chondritic parent bodies (abstract #2230). 38th Lunar and Planetary Science Conference. CD-ROM. Sagnotti L., Rochette P., Jackson M., Vadeboin F., Dinares- Turrel J., Winkler A., and MAGNET Science Team. 2003. Inter-laboratory calibration of low field and anhysteric susceptibility measurements. Physics of the Earth and Planetary Interiors 138:25–38. Schulze H., Bischoff A., Palme H., Spettel B., Dreibus G., and Orro J. 1994. Mineralogy and chemistry of Rumuruti: The first meteorite fall of the new R chondrite group. Meteoritics & Planetary Science 29:275–286. Schwarz E. J. 1975. Magnetic properties of pyrrhotite and their use in applied geology and geophysics. Geological Survey Canada Paper #74–59. 24 p. Shibata Y. 1996. Opaque minerals in Antarctic CO3 carbonaceous chondrites, Yamato-74135, 790992, 81020, 81025, 82050, and Allan Hills 77307. Proceedings of the NIPR Symposium on Antarctic Meteorites 9:79–96. Smith D. L., Ernst R. E., Samson C., and Herd R. 2006. Stony meteorite characterization by non-destructive measurement of magnetic properties. Meteoritics & Planetary Science 41: 355–373. Sugiura N. 1977. Magnetic properties and remanent magnetization of stony meteorites. Journal of Geomagnetism and Geoelectricity 29:519–539. Sugiura N. and Strangway D. W. 1983. A paleomagnetic conglomerate test using the Abee E4 meteorite. Earth and Planetary Science Letters 62:169–179. Sugiura N. and Strangway D. W. 1987. Magnetic studies of meteorites. In Meteorites and the early solar system, edited by Lauretta D. and McSween H. Y. Tucson: The University of Arizona Press. pp. 595–615. Terho M., Pesonen L. J., and Kukkonen I. T. 1991. The petrophysical classification of meteorites: New results. Geological Survey of Finland Report Q29.1/91/1. p. 40. Terho M., Pesonen L. J., Kukkonen I. T., and Bukovanska M. 1993. The petrophysical classification of meteorites. Studia Geophysica et Geodetica 37:65–82. Thorpe A. N., Senftle F. E., and Grant J. R. 2002. Magnetic study of magnetite in the Tagish Lake meteorite. Meteoritics & Planetary Science 37:763–771. Tonui E. K., Zolensky M. E., Hiroi T., Wang M.-S., and Lipschutz M. E. 2002. Petrographic, chemical and spectroscopic data on thermally metamorphosed carbonaceous chondrites (abstract #1288). 33rd Lunar and Planetary Science Conference. CD-ROM. Wasilewski P. 1981. New magnetic results from Allende C3(V). Physics of the Earth Planetary Interiors 26:134–148. Watson D. E., Larson E. E., Herndon J. M., and Rowe M. W. 1975. Thermomagnetic analysis of meteorites, 2. C2 chondrites. Earth and Planetary Science Letters 27:101–107. Zhang Y., Benoit P. H., and Sears D. W. G. 1995. The classification and complex thermal history of the enstatite chondrites. Journal of Geophysical Research 100:9417–9438. Zolensky M. E. and Ivanov A. 2001. Kaidun: A smorgasbord of new asteroid samples (abstract). Meteoritics & Planetary Science 36: A233.en
dc.description.obiettivoSpecifico2.2. Laboratorio di paleomagnetismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorRochette, P.en
dc.contributor.authorGattacceca, J.en
dc.contributor.authorBonal, L.en
dc.contributor.authorBourotte-Denise, M.en
dc.contributor.authorChevrier, V.en
dc.contributor.authorClerc, J.-P.en
dc.contributor.authorConsolmagno, G.en
dc.contributor.authorFolco, L.en
dc.contributor.authorGounelle, M.en
dc.contributor.authorKohout, T.en
dc.contributor.authorPesonen, L.en
dc.contributor.authorQuirico, E.en
dc.contributor.authorSagnotti, L.en
dc.contributor.authorSkripnik, A.en
dc.contributor.departmentCEREGE, CNRS Aix-Marseille Université, BP80 13545, Aix en Provence, Cedex 4, Franceen
dc.contributor.departmentLaboratoire de Planétologie de Grenoble, Université Joseph Fourier, Grenoble, Franceen
dc.contributor.departmentLaboratoire de Planétologie de Grenoble, Université Joseph Fourier, Grenoble, Franceen
dc.contributor.departmentMuséum National d’Histoire Naturelle, LEME, Paris, Franceen
dc.contributor.departmentCEREGE, CNRS Aix-Marseille Université, BP80 13545, Aix en Provence, Cedex 4, Franceen
dc.contributor.departmentIUSTI /CNRS Ecole Polytechnique Universitaire de Marseille, Franceen
dc.contributor.departmentSpecola Vaticana, Vatican City Stateen
dc.contributor.departmentMuseo Nazionale dell’Antartide, Università di Siena, Italyen
dc.contributor.departmentMuséum National d’Histoire Naturelle, LEME, Paris, Franceen
dc.contributor.departmentUniversity of Helsinki, Helsinki, Finlanden
dc.contributor.departmentUniversity of Helsinki, Helsinki, Finlanden
dc.contributor.departmentLaboratoire de Planétologie de Grenoble, Université Joseph Fourier, Grenoble, Franceen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentVernadsky Institute, Moscow, Russiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversité d’Aix Marseille 3, UMR CNRS 6635, CEREGE Europole de l’Arbois BP80 13545 Aix en Provence Cedex 4, France-
crisitem.author.deptJérôme Gattacceca, CEREGE, Aveneu Philibert, BP 80, 13545 Aix-en-Provence Cedex 4, France-
crisitem.author.deptLaboratoire de Planétologie de Grenoble, Université Joseph Fourier, Grenoble, France-
crisitem.author.deptMuséum National d’Histoire Naturelle, LEME, Paris, France-
crisitem.author.deptCEREGE, CNRS Aix-Marseille Université, BP80 13545, Aix en Provence, Cedex 4, France-
crisitem.author.deptIUSTI /CNRS Ecole Polytechnique Universitaire de Marseille, France-
crisitem.author.deptSpecola Vaticana, Vatican City State-
crisitem.author.deptMuseo Nazionale dell'Antartide, Università di Siena, via Laterina 8, I-53100 Siena, Italy-
crisitem.author.deptMuséum National d’Histoire Naturelle, LEME, Paris, France-
crisitem.author.dept5University of Helsinki, Finland-
crisitem.author.deptUniversity of Helsinki, Helsinki, Finland-
crisitem.author.deptLaboratoire de Planétologie de Grenoble, Université Joseph Fourier, Grenoble, France-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptVernadsky Institute, Moscow, Russia-
crisitem.author.orcid0000-0002-0655-4034-
crisitem.author.orcid0000-0003-3944-201X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
MAPSnonOC.pdfmain article1.71 MBAdobe PDF
Show simple item record

Page view(s) 50

215
checked on Apr 17, 2024

Download(s)

28
checked on Apr 17, 2024

Google ScholarTM

Check