Options
Magnetic classification of stony meteorites: 2. Non-ordinary chondrites
Author(s)
Language
English
Obiettivo Specifico
2.2. Laboratorio di paleomagnetismo
Status
Published
JCR Journal
JCR Journal
Peer review journal
Yes
Title of the book
Issue/vol(year)
5 / 43 (2008)
Publisher
The Meteoritical Society
Pages (printed)
959-980
Issued date
September 2008
Abstract
A database of magnetic susceptibility (χ) measurements on different non-ordinary
chondrites (C, E, R, and ungrouped) populations is presented and compared to our previous similar work on ordinary chondrites. It provides an exhaustive study of the amount of iron-nickel magnetic phases (essentially metal and magnetite) in these meteorites. In contrast with all the other classes, CM
and CV show a wide range of magnetic mineral content, with a two orders of magnitude variation of χ. Whether this is due to primary parent body differences, metamorphism or alteration, remains unclear. C3–4 and C2 yield similar χ values to the ones shown by CK and CM, respectively. By order of increasing χ, the classes with well-grouped χ are: R << CO < CK ≈ CI < Kak < CR < E ≈ CH < CB. Based on magnetism, EH and EL classes have indistinguishable metal content. Outliers that we suggest may need to have their classifications reconsidered are Acfer 202 (CO), Elephant Moraine (EET) 96026 (C4–5), Meteorite Hills (MET) 01149, and Northwest Africa (NWA) 521 (CK), Asuka
(A)-88198, LaPaz Icefield (LAP) 031156, and Sahara 98248 (R). χ values can also be used to define affinities of ungrouped chondrites, and propose pairing, particularly in the case of CM and CV meteorites.
chondrites (C, E, R, and ungrouped) populations is presented and compared to our previous similar work on ordinary chondrites. It provides an exhaustive study of the amount of iron-nickel magnetic phases (essentially metal and magnetite) in these meteorites. In contrast with all the other classes, CM
and CV show a wide range of magnetic mineral content, with a two orders of magnitude variation of χ. Whether this is due to primary parent body differences, metamorphism or alteration, remains unclear. C3–4 and C2 yield similar χ values to the ones shown by CK and CM, respectively. By order of increasing χ, the classes with well-grouped χ are: R << CO < CK ≈ CI < Kak < CR < E ≈ CH < CB. Based on magnetism, EH and EL classes have indistinguishable metal content. Outliers that we suggest may need to have their classifications reconsidered are Acfer 202 (CO), Elephant Moraine (EET) 96026 (C4–5), Meteorite Hills (MET) 01149, and Northwest Africa (NWA) 521 (CK), Asuka
(A)-88198, LaPaz Icefield (LAP) 031156, and Sahara 98248 (R). χ values can also be used to define affinities of ungrouped chondrites, and propose pairing, particularly in the case of CM and CV meteorites.
References
Bevan A. W. and Binns R. A. 1989. Meteorites from the Nullarbor
region, Western Australia: II. Recovery and classification of 34
new meteorite finds from the Mundrabilla, Forrest, Reid, and
Deakin areas. Meteoritics 24:135–141.
Bhandari N., Shah V. B., and Wasson J. T. 1980. The Parsa enstatite
chondrite. Meteoritics 15:225–233.
Bonal L., Quirico E., Bourot-Denise M., and Montagnac G. 2006.
Determination of the petrologic type of CV3 chondrites by
Raman spectroscopy of included organic matter. Geochimica et
Cosmochimica Acta 70:1849–1863.
Bonal L., Quirico E., Bourot-Denise M., and Lewin E. 2007. Organic
matter and metamorphic history of CO chondrites. Geochimica
et Cosmochimica Acta 71:1605–1623.
Bourot-Denise M., Zanda B., and Javoy M. 2002. Tafassasset: An
equilibrated CR chondrite (abstract #1611). 33rd Lunar and
Planetary Science Conference. CD-ROM.
Brandstätter F. and Kurat G. 2006. Unusual weathering effects in the
EL6 chondrite Northwest Africa 4282 (abstract). Meteoritics &
Planetary Science 41:A28.
Brearley A. J. and Jones R. H. 1998. Chondritic meteorites. In
Planetary materials, chapter 4, edited by Papike J. J. Reviews in
Mineralogy and Geochemistry, vol. 36. Washington, D.C.:
Mineralogical Scoiety of America. p. 370.
Brecher A. and Arrhenius G. 1974. The paleomagnetic record in
carbonaceaous chondrites: natural remanence and magnetic
properties. Journal of Geophysical Research 79:2081–2106.
Britt D. T. and Consolmagno G. J. 2003. Stony meteorite porosities
and densities: A review of the data through 2001. Meteoritics &
Planetary Science 38:1161–1180.
Browning L. B., McSween H. Y., and Zolensky M. E. 1996. Correlated
alteration effects in CM carbonaceous chondrites. Geochimica et
Cosmochimica Acta 60:2621–2633.
Carmichael R. S. 1989. Practical handbook of physical properties of
rocks and minerals. Boca Raton, Florida: CRC Press. 741 p.
Clayton R. N. and Mayeda T. K. 1999a. Links among CI and CM
chondrites (abstract #1795). 30th Lunar and Planetary Science
Conference. CD-ROM.
Clayton R. N. and Mayeda T. K. 1999b. Oxygen isotope studies of
carbonaceous chondrites. Geochimica et Cosmochimica Acta 63:
2089–2104.
Coey J. M. D., Roux-Buisson H., and Brussetti R. 1976. The
electronic phase transitions in FeS and NiS. Chapter 4 in Metalnon
metal transitions in transition metal compounds. Journal de
Physique Colloques 37:C4. pp. 1–10.
Dekkers M. J. 1988. Magnetic properties of natural pyrrhotite part I:
Behaviour of initial susceptibility and saturation magnetization
related rock magnetic parameters in a grain size dependent
framework. Physics of the Earth and Planetary Interiors 52:376–
393.
Endress M., Keil K., Bischoff A., Spettel B., Clayton R. N., and
Mayeda T. K. 1994. Origin of dark clasts in the Acfer 059/El
Djouf 001 CR2 chondrite. Meteoritics 29:26–40.
Folco L., Rochette P., Gattacceca J., and Perchiazzi N. 2006. In situ
identification, pairing, and classification of meteorites from
Antarctica by magnetic methods. Meteoritics & Planetary
Science 41:343–353.
Gastineau-Lyons H. K., McSween H. Y., and Gaffey M. J. 2002. A
critical evaluation of oxidation versus reduction during
metamorphism of L and LL group chondrites, and implications
for asteroid spectroscopy. Meteoritics & Planetary Science 37:
75–90.
Gattacceca J. and Rochette P. 2004. Toward a robust paleointensity
estimate for meteorites. Earth and Planetary Science Letters 227:
377–393.
Gattacceca J., Eisenlohr P., and Rochette P. 2004. Calibration of in
situ magnetic susceptibility measurements. Geophysical Journal
International 158:42–49.
Gattacceca J., Rochette P., Denise M., Consolmagno G., and Folco L.
2005. An impact origin for the foliation of ordinary chondrites.
Earth and Planetary Science Letters 234:351–368.
Gattacceca J., Bourot-Denise M., Brandstaetter F., Folco L., and
Rochette P. 2007. The Asco meteorite (1805): New petrographic
description, chemical data, and classification. Meteoritics &
Planetary Science 42:A173–A176.
Geiger T. and Bischoff A. 1995. Formation of opaques minerals in
CK chondrites. Planetary and Space Sciences 43:485–498.
Grady M. 2000. Catalogue of meteorites, 5th edition. Cambridge:
Cambridge University Press. 689 pp.
Greenwood R. C., Franchi I. A., Kearsley A. T., and Alard O. 2004.
The relationship between CK and CV chondrites: A single parent
body source (abstract #1664). 34th Lunar and Planetary Science
Conference. CD-ROM.
Gounelle M. and Zolensky M. E. 2001. A terrestrial origin for sulfate
veins in CI1 chondrites. Meteoritics & Planetary Science 36:
321–1329.
Heider F., Zitzelsberger A., and Fabian K. 1996. Magnetic
susceptibility and remanent coercive force in grown magnetite
crystals from 0.1 μm to 6 mm. Physics of the Earth and Planetary
Interiors 93:239–256.
Herndon J. M., Rowe M. W., Larson E. E., and Watson D. E. 1976.
Thermomagnetic analysis of meteorites, 3. C3 and C4 chondrites.
Earth and Planetary Science Letters 29:283–290.
Hyman M. and Rowe M. W. 1986. Saturation magnetization
measurements of carbonaceaous chondrites. Meteoritics 21:1–22.
Jarosewich E. 1990. Chemical analysis of meteorites: Compilation of
stony and iron meteorite analyses. Meteoritics 25:323–337.
Kallemeyn G. W., Rubin A. E., and Wasson J. T. 1996. The
compositional classification of chondrites: VII. The R-chondrite
group. Geochimica et Cosmochimica Acta 60:2243–2256.
Kohout T., Elbra T., Pesonen L. J., Schnabl P., and Slechta S. 2006.
Applications of the meteorite physical properties data obtained
using mobile laboratory facility (abstract). Meteoritics &
Planetary Science 41:A98.
Kong P., Mori T., and Ebihara M. 1997. Compositional continuity of
enstatite chondrites and implications for heterogeneous accretion
of the enstatite parent body. Geochimica et Cosmochimica Acta
61:4895–4914.
Krot A. N., Meibom A., Weisberg M. K., and Keil K. 2002. The CR
chondrite clan: Implications for early solar system processes.
Meteoritics & Planetary Science 37:1451–1490.
Krot A. N., Petaev M. I., and Bland P. A. 2003. Growth of ferrous
olivine in the oxidized CV chondrites during fluid-assisted
thermal metamorphism (abstract). Meteoritics & Planetary
Science 38:A73.
Krot A. N., Keil K., Goodrich C. A., Scott E. R. D., and Weisberg
M. K. 2005. Classification of meteorites. In Meteorites, comets,
and planets, edited by Davis A. M. Treatise on Geochemistry,
vol. 1. Amsterdam: Elsevier. pp. 83–128.
Larson E. E., Watson D. E., Herndon J. M., and Rowe M. W. 1974.
Thermomagnetic analysis of meteorites, 1. C1 chondrites. Earth
and Planetary Science Letters 21:345–350.
Latham A. G., Harding K. L., Lapointe P., Morris W. A., and Balch
S. J. 1989. On the log normal distribution of oxides in rocks,
using magnetic susceptibility as a proxy for oxide mineral
concentration. Geophysical Journal International 96:179–
184.
Lecoanet H., Leveque F., and Segura S. 1999. Magnetic susceptibility
in environmental application: Comparison of field probes.
Physics of the Earth and Planetary Interiors 115:191–204.
McSween H. Y. Jr. 1977. Petrographic variations among carbonaceaous
chondrites of the Vigarano type. Geochimica et Cosmochimica
Acta 41:1777–1790.
Menzies O. N., Bland P. A., Berry F. J., and Cressey G. 2005. A
Mössbauer spectroscopy and X-ray diffraction study of ordinary
chondrites: Quantification of modal mineralogy and implications
for redox conditions during metamorphism. Meteoritics &
Planetary Science 40:1023–1042.
Nagata T. 1979. Meteorite magnetism and the early solar system magnetic
field. Physics of the Earth and Planetary Interiors 20:324–341.
Pesonen L. J., Terho M., and Kukkonen I. 1993. Physical properties
of 368 meteorites. Implications for meteorite magnetism and
planetary geophysics. Proceedings of the NIPR Symposium on
Antarctic Meteorites 6:401–406.
Quirico E., Raynal P. I., and Bourot-Denise M. 2003. Metamorphic
grade of organic matter in six unequilibrated ordinary chondrites.
Meteoritics & Planetary Science 38:795–811.
Rochette P. 1987. Magnetic susceptibility of the rock matrix related
to magnetic fabric studies. Journal of Structural Geology 9:
1015–1020.
Rochette P., Sagnotti L., Consolmagno G., Folco L., Maras A.,
Panzarino F., Pesonen L., Serra R., and Terho M. 2001a. A
magnetic susceptibility database for stony meteorites. Quaderni
di Geofisica 18:24.
Rochette P., Lorand J. P., Fillion G., and Sautter V. 2001b. Pyrrhotite
and the remanent magnetization of SNC meteorites: A changing
perspective on Martian magnetism. Earth and Planetary Science
Letters 190:1–12.
Rochette P., Gattacceca J., Menvielle P., Eisenlohr P., and Chevrier V.
2004. Interest and design of magnetic properties measurements
on planetary and asteroidal landers. Planetary and Space Science
52:987–995.
Rochette P., Sagnotti L., Bourot-Denise M., Consolmagno G.,
Folco L., Gattacceca J., Osete M. L., and Pesonen L. 2003.
Magnetic classification of stony meteorites: 1. Ordinary
chondrites. Meteoritics & Planetary Science 38:251–268.
Rochette P., Gattacceca J., Chevrier V., Hoffmann V., Lorand J. P.,
Funaki M., and Hochleitner R. 2005. Matching Martian crustal
magnetization and meteorite magnetic properties. Meteoritics &
Planetary Science 40:529–540.
Rubin A. E. 1997. Mineralogy of meteorite groups—An update.
Meteoritics & Planetary Science 32:733–734.
Rumble D. III, Irving A. J., Kuehner S. M., and Bunch T. E. 2007.
Supra-TFL oxygen isotopic compositions in metal-poor
“ordinary” chondrites: Samples from unrecognized chondritic
parent bodies (abstract #2230). 38th Lunar and Planetary Science
Conference. CD-ROM.
Sagnotti L., Rochette P., Jackson M., Vadeboin F., Dinares-
Turrel J., Winkler A., and MAGNET Science Team. 2003.
Inter-laboratory calibration of low field and anhysteric
susceptibility measurements. Physics of the Earth and
Planetary Interiors 138:25–38.
Schulze H., Bischoff A., Palme H., Spettel B., Dreibus G., and
Orro J. 1994. Mineralogy and chemistry of Rumuruti: The first
meteorite fall of the new R chondrite group. Meteoritics &
Planetary Science 29:275–286.
Schwarz E. J. 1975. Magnetic properties of pyrrhotite and their use
in applied geology and geophysics. Geological Survey Canada
Paper #74–59. 24 p.
Shibata Y. 1996. Opaque minerals in Antarctic CO3 carbonaceous
chondrites, Yamato-74135, 790992, 81020, 81025, 82050, and
Allan Hills 77307. Proceedings of the NIPR Symposium on
Antarctic Meteorites 9:79–96.
Smith D. L., Ernst R. E., Samson C., and Herd R. 2006. Stony
meteorite characterization by non-destructive measurement of
magnetic properties. Meteoritics & Planetary Science 41:
355–373.
Sugiura N. 1977. Magnetic properties and remanent magnetization of
stony meteorites. Journal of Geomagnetism and Geoelectricity
29:519–539.
Sugiura N. and Strangway D. W. 1983. A paleomagnetic
conglomerate test using the Abee E4 meteorite. Earth and
Planetary Science Letters 62:169–179.
Sugiura N. and Strangway D. W. 1987. Magnetic studies of
meteorites. In Meteorites and the early solar system, edited by
Lauretta D. and McSween H. Y. Tucson: The University of
Arizona Press. pp. 595–615.
Terho M., Pesonen L. J., and Kukkonen I. T. 1991. The petrophysical
classification of meteorites: New results. Geological Survey of
Finland Report Q29.1/91/1. p. 40.
Terho M., Pesonen L. J., Kukkonen I. T., and Bukovanska M. 1993.
The petrophysical classification of meteorites. Studia
Geophysica et Geodetica 37:65–82.
Thorpe A. N., Senftle F. E., and Grant J. R. 2002. Magnetic study of
magnetite in the Tagish Lake meteorite. Meteoritics & Planetary
Science 37:763–771.
Tonui E. K., Zolensky M. E., Hiroi T., Wang M.-S., and Lipschutz M. E.
2002. Petrographic, chemical and spectroscopic data on thermally
metamorphosed carbonaceous chondrites (abstract #1288). 33rd
Lunar and Planetary Science Conference. CD-ROM.
Wasilewski P. 1981. New magnetic results from Allende C3(V).
Physics of the Earth Planetary Interiors 26:134–148.
Watson D. E., Larson E. E., Herndon J. M., and Rowe M. W. 1975.
Thermomagnetic analysis of meteorites, 2. C2 chondrites. Earth
and Planetary Science Letters 27:101–107.
Zhang Y., Benoit P. H., and Sears D. W. G. 1995. The classification
and complex thermal history of the enstatite chondrites. Journal
of Geophysical Research 100:9417–9438.
Zolensky M. E. and Ivanov A. 2001. Kaidun: A smorgasbord of new
asteroid samples (abstract). Meteoritics & Planetary Science 36:
A233.
region, Western Australia: II. Recovery and classification of 34
new meteorite finds from the Mundrabilla, Forrest, Reid, and
Deakin areas. Meteoritics 24:135–141.
Bhandari N., Shah V. B., and Wasson J. T. 1980. The Parsa enstatite
chondrite. Meteoritics 15:225–233.
Bonal L., Quirico E., Bourot-Denise M., and Montagnac G. 2006.
Determination of the petrologic type of CV3 chondrites by
Raman spectroscopy of included organic matter. Geochimica et
Cosmochimica Acta 70:1849–1863.
Bonal L., Quirico E., Bourot-Denise M., and Lewin E. 2007. Organic
matter and metamorphic history of CO chondrites. Geochimica
et Cosmochimica Acta 71:1605–1623.
Bourot-Denise M., Zanda B., and Javoy M. 2002. Tafassasset: An
equilibrated CR chondrite (abstract #1611). 33rd Lunar and
Planetary Science Conference. CD-ROM.
Brandstätter F. and Kurat G. 2006. Unusual weathering effects in the
EL6 chondrite Northwest Africa 4282 (abstract). Meteoritics &
Planetary Science 41:A28.
Brearley A. J. and Jones R. H. 1998. Chondritic meteorites. In
Planetary materials, chapter 4, edited by Papike J. J. Reviews in
Mineralogy and Geochemistry, vol. 36. Washington, D.C.:
Mineralogical Scoiety of America. p. 370.
Brecher A. and Arrhenius G. 1974. The paleomagnetic record in
carbonaceaous chondrites: natural remanence and magnetic
properties. Journal of Geophysical Research 79:2081–2106.
Britt D. T. and Consolmagno G. J. 2003. Stony meteorite porosities
and densities: A review of the data through 2001. Meteoritics &
Planetary Science 38:1161–1180.
Browning L. B., McSween H. Y., and Zolensky M. E. 1996. Correlated
alteration effects in CM carbonaceous chondrites. Geochimica et
Cosmochimica Acta 60:2621–2633.
Carmichael R. S. 1989. Practical handbook of physical properties of
rocks and minerals. Boca Raton, Florida: CRC Press. 741 p.
Clayton R. N. and Mayeda T. K. 1999a. Links among CI and CM
chondrites (abstract #1795). 30th Lunar and Planetary Science
Conference. CD-ROM.
Clayton R. N. and Mayeda T. K. 1999b. Oxygen isotope studies of
carbonaceous chondrites. Geochimica et Cosmochimica Acta 63:
2089–2104.
Coey J. M. D., Roux-Buisson H., and Brussetti R. 1976. The
electronic phase transitions in FeS and NiS. Chapter 4 in Metalnon
metal transitions in transition metal compounds. Journal de
Physique Colloques 37:C4. pp. 1–10.
Dekkers M. J. 1988. Magnetic properties of natural pyrrhotite part I:
Behaviour of initial susceptibility and saturation magnetization
related rock magnetic parameters in a grain size dependent
framework. Physics of the Earth and Planetary Interiors 52:376–
393.
Endress M., Keil K., Bischoff A., Spettel B., Clayton R. N., and
Mayeda T. K. 1994. Origin of dark clasts in the Acfer 059/El
Djouf 001 CR2 chondrite. Meteoritics 29:26–40.
Folco L., Rochette P., Gattacceca J., and Perchiazzi N. 2006. In situ
identification, pairing, and classification of meteorites from
Antarctica by magnetic methods. Meteoritics & Planetary
Science 41:343–353.
Gastineau-Lyons H. K., McSween H. Y., and Gaffey M. J. 2002. A
critical evaluation of oxidation versus reduction during
metamorphism of L and LL group chondrites, and implications
for asteroid spectroscopy. Meteoritics & Planetary Science 37:
75–90.
Gattacceca J. and Rochette P. 2004. Toward a robust paleointensity
estimate for meteorites. Earth and Planetary Science Letters 227:
377–393.
Gattacceca J., Eisenlohr P., and Rochette P. 2004. Calibration of in
situ magnetic susceptibility measurements. Geophysical Journal
International 158:42–49.
Gattacceca J., Rochette P., Denise M., Consolmagno G., and Folco L.
2005. An impact origin for the foliation of ordinary chondrites.
Earth and Planetary Science Letters 234:351–368.
Gattacceca J., Bourot-Denise M., Brandstaetter F., Folco L., and
Rochette P. 2007. The Asco meteorite (1805): New petrographic
description, chemical data, and classification. Meteoritics &
Planetary Science 42:A173–A176.
Geiger T. and Bischoff A. 1995. Formation of opaques minerals in
CK chondrites. Planetary and Space Sciences 43:485–498.
Grady M. 2000. Catalogue of meteorites, 5th edition. Cambridge:
Cambridge University Press. 689 pp.
Greenwood R. C., Franchi I. A., Kearsley A. T., and Alard O. 2004.
The relationship between CK and CV chondrites: A single parent
body source (abstract #1664). 34th Lunar and Planetary Science
Conference. CD-ROM.
Gounelle M. and Zolensky M. E. 2001. A terrestrial origin for sulfate
veins in CI1 chondrites. Meteoritics & Planetary Science 36:
321–1329.
Heider F., Zitzelsberger A., and Fabian K. 1996. Magnetic
susceptibility and remanent coercive force in grown magnetite
crystals from 0.1 μm to 6 mm. Physics of the Earth and Planetary
Interiors 93:239–256.
Herndon J. M., Rowe M. W., Larson E. E., and Watson D. E. 1976.
Thermomagnetic analysis of meteorites, 3. C3 and C4 chondrites.
Earth and Planetary Science Letters 29:283–290.
Hyman M. and Rowe M. W. 1986. Saturation magnetization
measurements of carbonaceaous chondrites. Meteoritics 21:1–22.
Jarosewich E. 1990. Chemical analysis of meteorites: Compilation of
stony and iron meteorite analyses. Meteoritics 25:323–337.
Kallemeyn G. W., Rubin A. E., and Wasson J. T. 1996. The
compositional classification of chondrites: VII. The R-chondrite
group. Geochimica et Cosmochimica Acta 60:2243–2256.
Kohout T., Elbra T., Pesonen L. J., Schnabl P., and Slechta S. 2006.
Applications of the meteorite physical properties data obtained
using mobile laboratory facility (abstract). Meteoritics &
Planetary Science 41:A98.
Kong P., Mori T., and Ebihara M. 1997. Compositional continuity of
enstatite chondrites and implications for heterogeneous accretion
of the enstatite parent body. Geochimica et Cosmochimica Acta
61:4895–4914.
Krot A. N., Meibom A., Weisberg M. K., and Keil K. 2002. The CR
chondrite clan: Implications for early solar system processes.
Meteoritics & Planetary Science 37:1451–1490.
Krot A. N., Petaev M. I., and Bland P. A. 2003. Growth of ferrous
olivine in the oxidized CV chondrites during fluid-assisted
thermal metamorphism (abstract). Meteoritics & Planetary
Science 38:A73.
Krot A. N., Keil K., Goodrich C. A., Scott E. R. D., and Weisberg
M. K. 2005. Classification of meteorites. In Meteorites, comets,
and planets, edited by Davis A. M. Treatise on Geochemistry,
vol. 1. Amsterdam: Elsevier. pp. 83–128.
Larson E. E., Watson D. E., Herndon J. M., and Rowe M. W. 1974.
Thermomagnetic analysis of meteorites, 1. C1 chondrites. Earth
and Planetary Science Letters 21:345–350.
Latham A. G., Harding K. L., Lapointe P., Morris W. A., and Balch
S. J. 1989. On the log normal distribution of oxides in rocks,
using magnetic susceptibility as a proxy for oxide mineral
concentration. Geophysical Journal International 96:179–
184.
Lecoanet H., Leveque F., and Segura S. 1999. Magnetic susceptibility
in environmental application: Comparison of field probes.
Physics of the Earth and Planetary Interiors 115:191–204.
McSween H. Y. Jr. 1977. Petrographic variations among carbonaceaous
chondrites of the Vigarano type. Geochimica et Cosmochimica
Acta 41:1777–1790.
Menzies O. N., Bland P. A., Berry F. J., and Cressey G. 2005. A
Mössbauer spectroscopy and X-ray diffraction study of ordinary
chondrites: Quantification of modal mineralogy and implications
for redox conditions during metamorphism. Meteoritics &
Planetary Science 40:1023–1042.
Nagata T. 1979. Meteorite magnetism and the early solar system magnetic
field. Physics of the Earth and Planetary Interiors 20:324–341.
Pesonen L. J., Terho M., and Kukkonen I. 1993. Physical properties
of 368 meteorites. Implications for meteorite magnetism and
planetary geophysics. Proceedings of the NIPR Symposium on
Antarctic Meteorites 6:401–406.
Quirico E., Raynal P. I., and Bourot-Denise M. 2003. Metamorphic
grade of organic matter in six unequilibrated ordinary chondrites.
Meteoritics & Planetary Science 38:795–811.
Rochette P. 1987. Magnetic susceptibility of the rock matrix related
to magnetic fabric studies. Journal of Structural Geology 9:
1015–1020.
Rochette P., Sagnotti L., Consolmagno G., Folco L., Maras A.,
Panzarino F., Pesonen L., Serra R., and Terho M. 2001a. A
magnetic susceptibility database for stony meteorites. Quaderni
di Geofisica 18:24.
Rochette P., Lorand J. P., Fillion G., and Sautter V. 2001b. Pyrrhotite
and the remanent magnetization of SNC meteorites: A changing
perspective on Martian magnetism. Earth and Planetary Science
Letters 190:1–12.
Rochette P., Gattacceca J., Menvielle P., Eisenlohr P., and Chevrier V.
2004. Interest and design of magnetic properties measurements
on planetary and asteroidal landers. Planetary and Space Science
52:987–995.
Rochette P., Sagnotti L., Bourot-Denise M., Consolmagno G.,
Folco L., Gattacceca J., Osete M. L., and Pesonen L. 2003.
Magnetic classification of stony meteorites: 1. Ordinary
chondrites. Meteoritics & Planetary Science 38:251–268.
Rochette P., Gattacceca J., Chevrier V., Hoffmann V., Lorand J. P.,
Funaki M., and Hochleitner R. 2005. Matching Martian crustal
magnetization and meteorite magnetic properties. Meteoritics &
Planetary Science 40:529–540.
Rubin A. E. 1997. Mineralogy of meteorite groups—An update.
Meteoritics & Planetary Science 32:733–734.
Rumble D. III, Irving A. J., Kuehner S. M., and Bunch T. E. 2007.
Supra-TFL oxygen isotopic compositions in metal-poor
“ordinary” chondrites: Samples from unrecognized chondritic
parent bodies (abstract #2230). 38th Lunar and Planetary Science
Conference. CD-ROM.
Sagnotti L., Rochette P., Jackson M., Vadeboin F., Dinares-
Turrel J., Winkler A., and MAGNET Science Team. 2003.
Inter-laboratory calibration of low field and anhysteric
susceptibility measurements. Physics of the Earth and
Planetary Interiors 138:25–38.
Schulze H., Bischoff A., Palme H., Spettel B., Dreibus G., and
Orro J. 1994. Mineralogy and chemistry of Rumuruti: The first
meteorite fall of the new R chondrite group. Meteoritics &
Planetary Science 29:275–286.
Schwarz E. J. 1975. Magnetic properties of pyrrhotite and their use
in applied geology and geophysics. Geological Survey Canada
Paper #74–59. 24 p.
Shibata Y. 1996. Opaque minerals in Antarctic CO3 carbonaceous
chondrites, Yamato-74135, 790992, 81020, 81025, 82050, and
Allan Hills 77307. Proceedings of the NIPR Symposium on
Antarctic Meteorites 9:79–96.
Smith D. L., Ernst R. E., Samson C., and Herd R. 2006. Stony
meteorite characterization by non-destructive measurement of
magnetic properties. Meteoritics & Planetary Science 41:
355–373.
Sugiura N. 1977. Magnetic properties and remanent magnetization of
stony meteorites. Journal of Geomagnetism and Geoelectricity
29:519–539.
Sugiura N. and Strangway D. W. 1983. A paleomagnetic
conglomerate test using the Abee E4 meteorite. Earth and
Planetary Science Letters 62:169–179.
Sugiura N. and Strangway D. W. 1987. Magnetic studies of
meteorites. In Meteorites and the early solar system, edited by
Lauretta D. and McSween H. Y. Tucson: The University of
Arizona Press. pp. 595–615.
Terho M., Pesonen L. J., and Kukkonen I. T. 1991. The petrophysical
classification of meteorites: New results. Geological Survey of
Finland Report Q29.1/91/1. p. 40.
Terho M., Pesonen L. J., Kukkonen I. T., and Bukovanska M. 1993.
The petrophysical classification of meteorites. Studia
Geophysica et Geodetica 37:65–82.
Thorpe A. N., Senftle F. E., and Grant J. R. 2002. Magnetic study of
magnetite in the Tagish Lake meteorite. Meteoritics & Planetary
Science 37:763–771.
Tonui E. K., Zolensky M. E., Hiroi T., Wang M.-S., and Lipschutz M. E.
2002. Petrographic, chemical and spectroscopic data on thermally
metamorphosed carbonaceous chondrites (abstract #1288). 33rd
Lunar and Planetary Science Conference. CD-ROM.
Wasilewski P. 1981. New magnetic results from Allende C3(V).
Physics of the Earth Planetary Interiors 26:134–148.
Watson D. E., Larson E. E., Herndon J. M., and Rowe M. W. 1975.
Thermomagnetic analysis of meteorites, 2. C2 chondrites. Earth
and Planetary Science Letters 27:101–107.
Zhang Y., Benoit P. H., and Sears D. W. G. 1995. The classification
and complex thermal history of the enstatite chondrites. Journal
of Geophysical Research 100:9417–9438.
Zolensky M. E. and Ivanov A. 2001. Kaidun: A smorgasbord of new
asteroid samples (abstract). Meteoritics & Planetary Science 36:
A233.
Type
article
File(s)
No Thumbnail Available
Name
MAPSnonOC.pdf
Description
main article
Size
1.67 MB
Format
Adobe PDF
Checksum (MD5)
c728540d735623706d3350154f5ac971