Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4052
DC FieldValueLanguage
dc.contributor.authorallFrezzotti, M.; Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, ‘Progetto Clima Globale’, Rome, Italyen
dc.contributor.authorallPourchet, M.; Laboratoire de Glaciologie et Géophysique de l’Environnement, CNRS, Saint Martin d’Hères, Franceen
dc.contributor.authorallFlora, O.; Dipartimento di Scienze Geologiche, Ambientali e Marine, University of Trieste, Trieste, Italyen
dc.contributor.authorallGandolfi, S.; Dipartimento di Ingegneria delle Strutture, dei Trasporti, delle Acque, del Rilevamento, del Territorio, University of Bologna, Bologna, Italyen
dc.contributor.authorallGay, M.; Laboratoire de Glaciologie et Géophysique de l’Environnement, CNRS, Saint Martin d’Hères, Franceen
dc.contributor.authorallUrbini, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallVincent, C.; Laboratoire de Glaciologie et Géophysique de l’Environnement, CNRS, Saint Martin d’Hères, Franceen
dc.contributor.authorallBecagli, S.; Dipartimento di Chimica, University of Florence, Florence, Italyen
dc.contributor.authorallGragnani, R.; Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, ‘Progetto Clima Globale’, Rome, Italyen
dc.contributor.authorallProposito, M.; Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, ‘Progetto Clima Globale’, Rome, Italyen
dc.contributor.authorallSeveri, M.; Dipartimento di Chimica, University of Florence, Florence, Italyen
dc.contributor.authorallTraversi, R.; Dipartimento di Chimica, University of Florence, Florence, Italyen
dc.contributor.authorallUdisti, R.; Dipartimento di Chimica, University of Florence, Florence, Italyen
dc.contributor.authorallFily, M.; Laboratoire de Glaciologie et Géophysique de l’Environnement, CNRS, Saint Martin d’Hères, Franceen
dc.date.accessioned2008-09-11T12:21:58Zen
dc.date.available2008-09-11T12:21:58Zen
dc.date.issued2005-07-21en
dc.identifier.urihttp://hdl.handle.net/2122/4052en
dc.description.abstractRecent snow accumulation rate is a key quantity for ice core and mass balance studies. Several accumulation measurement methods (stake farm, fin core, snow-radar profiling, surface morphology, remote sensing) were used, compared and integrated at eight sites along a transect from Terra Nova Bay to Dome C (East Antarctica) to provide information about the spatial and temporal variability of snow accumulation. Thirty-nine cores were dated by identifying tritium/β marker levels (1965–66[AUTHOR: Please check dates, I don’t think this agrees with table 1]) and no-sea-salt (nss) SO4 raised to the power of 2– spikes of the Tambora volcanic event (1816) in order to provide information on temporal variability. Cores were linked by snow radar and GPS surveys to provide detailed information on spatial variability in snow accumulation. Stake farm and ice core accumulation rates are observed to differ significantly, but isochrones (snow radar) correlate well with ice core derived accumulation. The accumulation/ablation pattern from stake measurements suggests that the annual local noise (metre scale) in snow accumulation can approach 2 years of ablation and more than four times the average annual accumulation, with no accumulation or ablation for a 5-year period in up to 40% of cases. The spatial variability of snow accumulation at the kilometre scale is one order of magnitude higher than temporal variability at the multi-decadal/secular scale. Stake measurements and firn cores at Dome C confirm an approximate 30% increase in accumulation over the last two centuries, with respect to the average over the last 5000 years.en
dc.language.isoEnglishen
dc.publisher.nameInternational Glaciological Societyen
dc.relation.ispartofJournal of Glaciolgyen
dc.relation.ispartofseries172 / 51 (2005)en
dc.subjectEast Antarcticaen
dc.subjectGPRen
dc.subjectGPSen
dc.subjectsnow accumulationen
dc.titleSpatial and temporal variability of snow accumulation in East Antarctica from traverse dataen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber113-124en
dc.subject.INGV02. Cryosphere::02.02. Glaciers::02.02.02. Cryosphere/atmosphere Interactionen
dc.subject.INGV02. Cryosphere::02.02. Glaciers::02.02.06. Mass balanceen
dc.identifier.doi10.3189/172756505781829502en
dc.relation.referencesAlley, R.B. 1988. Concerning the deposition and diagenesis of strata in polar firn. J. Glaciol., 34(118), 283–290. Becagli, S. and. others. 2003. Variability of snow depositions along the 1998/99 ITASE traverse. Terra Antartica Reports, 8, 43–48. Bell, R.E., M. Studinger, A.A. Tikku, G.K.C. Clarke, M.M. Gutner and C. Meertens. 2002. Origin and fate of Lake Vostok water frozen to the base of the East Antarctic ice sheet. Nature, 416(6878), 307–310. Black, H.P. and W. Budd. 1964. Accumulation in the region of Wilkes, Wilkes Land, Antarctica. J. Glaciol., 5(37), 3–15. Bromwich, D.H., Z. Guo, L. Bai and Q. Chen. 2004. Modelled Antarctic precipitation. Part I: spatial and temporal varialbility. J. Climate, 17(3), 427–447. Bromwich, D.H. and C.J. Weaver. 1983. Latitudinal displacement from main moisture source controls 18O of snow in coastal Antarctica. Nature, 301(5896), 145–147. Capra, A., R. Cefalo, S. Gandolfi, G. Manzoni, I.E. Tabacco and L. Vittuari. 2000. Surface topography of Dome Concordia (Antarctica) from kinematic interferential GPS and bedrock topography. Ann. Glaciol., 30, 42–46. Casey, K.S. and P. Cornillon. 2001. Global and regional sea surface temperature trends. J. Climate, 14(18), 3801–3818. Cole-Dai, J., E. Mosley-Thompson and L.G. Thompson. 1997. Annually resolved Southern Hemisphere volcanic history from two Antarctic ice cores. J. Geophys. Res., 102(D14), 16,761– 16,771. Dai, J., E. Mosley-Thompson and L.G. Thompson. 1991. Ice core evidence for an explosive tropical volcanic eruption 6 years preceding Tambora. J. Geophys. Res., 96(D9), 17,361–17,366. Delaygue, G., V. Masson and J. Jouzel. 1999. Climatic stability of the geographic origin of Antarctic precipitation simulated by an atmospheric general circulation model. Ann. Glaciol., 29, 45– 48. Delmotte, M., D. Raynaud, V. Morgan and J. Jouzel. 1999. Climatic and glaciological information inferred from air-content measurements of a Law Dome (East Antarctica) ice core. J. Glaciol., 45(150), 255–263. Doran, P.T. and 12 others. 2002. Antarctic climate cooling and terrestrial ecosystem response. Nature, 415(6871), 517–520. (doi:10.1038/nature710.) Ekaykin, A.A., V.Y.a Lipenkov, N.I. Barkov, J.R. Petit and V. Masson- Delmotte. 2002. Spatial and temporal variability in isotope composition of recent snow in the vicinity of Vostok station, Antarctica: implications for ice-core record interpretation. Ann. Glaciol., 35, 181–186. Ekaykin, A.A., V.Y.a Lipenkov, I.N. Kuz’mina, J.R. Petit, V. Masson- Delmotte and S.J. Johnsen. 2004. The changes in isotope composition and accumulation of snow at Vostok Station over the past 200 years. Ann. Glaciol., 39, In press. EPICA community members. 2004. Eight glacial cycles from an Antarctic ice core. Nature, 429(6992), 623–628. (doi:10.1038/ nature02599.) Fahnestock, M.A., T.A. Scambos, C.A. Shuman, R.J. Arthern, D.P. Winebrenner and R. Kwok. 2000. Snow megadune fields on the East Antarctic Plateau: extreme atmosphere–ice interaction. Geophys. Res. Lett., 27(22), 3719–3722. Fisher, D.A., N. Reeh and H.B. Clausen. 1985. Stratigraphic noise in the time series derived from ice cores. Ann. Glaciol., 7, 76– 83. Frezzotti, M. and O. Flora. 2002. Ice dynamic features and climatic surface parameters in East Antarctica from Terra Nova Bay to Talos Dome and Dome C: ITASE Italian traverses. Terra Antartica, 9(1), 47–54. Frezzotti, M., S. Gandolfi, F. La Marca and S. Urbini. 2002a. Snow dunes and glazed surfaces in Antarctica: new field and remotesensing data. Ann. Glaciol., 34, 81–88. Frezzotti, M., S. Gandolfi and S. Urbini. 2002b. Snow megadunes in Antarctica: sedimentary structure and genesis. J. Geophys. Res., 107(D18), 4344, ACL X-1–X-12. (NO. D18, 4344.) (d.o.i. 10.1029/2001JD000673.) Frezzotti, M. and 12 others. 2004. New estimations of precipitation and surface sublimation in East Antarctica from snow accumulation measurements. Climate Dyn. (doi:10.1007/s00382–004– 0462–5.) Fujii, Y. and K. Kusunoki. 1982. The role of sublimation and condensation in the formation of ice sheet surface at Mizuho Station, Antarctica. J. Geophys. Res., 87(C6), 4293–4300. Gay, M., M. Fily, C. Genthon, M. Frezzotti, H. Oerter and J.-G. Winther. 2002. Snow grain-size measurements in Antarctica. J. Glaciol., 48(163), 527–535. Goodwin, I.D. 1990. Snow accumulation and surface topography in the katabatic zone of eastern Wilkes Land, Antarctica. Antarct. Sci., 2(3), 235–242. Gow, A.J. 1965. On the accumulation and seasonal stratification of snow at the South Pole. J. Glaciol., 5(40), 467–477. Gragnani, R., C. Smiraglia, B. Stenni and S. Torcini. 1998. Chemical and isotopic profiles from snow pits and shallow firn cores on Campbell Glacier, northern Victoria Land, Antarctica. Ann. Glaciol., 27, 679–684. Isaksson, E., W. Karle´n, N. Gundestrup, P. Mayewski, S. Whitlow and M. Twickler. 1996. A century of accumulation and temperature changes in Dronning Maud Land, Antarctica. J. Geophys. Res., 101(D3), 7085–7094. Jouzel, J., L. Merlivat, J.R. Petit and C. Lorius. 1983. Climatic information over the last century deduced from a detailed isotopic record in the South Pole snow. J. Geophys. Res., 88(C4), 2693–2703. Jouzel, J., L. Merlivat, M. Pourchet and C. Lorius. 1979. A continuous record of artificial tritium fallout at the South Pole (1954–1978). Earth Planet. Sci. Lett., 45(1), 188–200. Kwok, R. and J.C. Comiso. 2002. Spatial patterns of variability in Antarctic surface temperature: connections to the Southern Hemisphere annual mode and the Southern Oscillation. Geophys. Res. Lett., 29(14). (10.1029/2002GL015415.) Legrand, M.R. and R.J. Delmas. 1987. A 220-year continuous record of volcanic H2SO4 in the Antarctic ice sheet. Nature, 327(6124), 671–676. Liston, G.E., J.-G. Winther, O. Bruland, H. Elvehøy, K. Sand and L. Karlo¨ f. 2000. Snow and blue-ice distribution patterns on the coastal Antarctic ice sheet. Antarct. Sci., 12(1), 69–79. Lorius, C. 1983. Accumulation rate measurements on cold polar glaciers. In Robin, G.de Q., ed. The climatic record in polar ice sheets. Cambridge, Cambridge University Press, 65–70. Mayewski, P.A. and I. Goodwin. 1999. Antarctic’s role pursued in global climate change. Eos, 80(35), 398–400. Morgan, V.I., I.D. Goodwin, D.M. Etheridge and C.W. Wookey. 1991. Evidence from Antarctic ice cores for recent increases in snow accumulation. Nature, 354(6348), 58–60. Mosley-Thompson, E., J.F. Paskievitch, A.J. Gow and L.G. Thompson. 1999. Late 20th century increase in South Pole snow accumulation. J. Geophys. Res., 104(D4), 3877–3886. Mosley-Thompson, E. and 6 others. 1995. Recent increase in South Pole snow accumulation. Ann. Glaciol., 21, 131–138. Mulvaney, R., D. Wagenbach and E. Wolff. 1998. Postdepositional change in snowpack nitrate from observation of year-round nearsurface snow in coastal Antarctica. J. Geophys. Res., 103(D9), 11,021–11,031. Oerter, H., W. Graf, F. Wilhelms, A. Minikin and H. Miller. 1999. Accumulation studies on Amundsenisen, Dronning Maud Land, by means of tritium, dielectric profiling and stable-isotope measurements: first results from the 1995–96 and 1996–97 field seasons. Ann. Glaciol., 29, 1–9. Palais, J.M., I.M. Whillans and C. Bull. 1982. Snow stratigraphic studies at Dome C, East Antarctica: an investigation of depositional and diagenetic processes. Ann. Glaciol., 3, 239– 242. Parish, T.R. and D.H. Bromwich. 1991. Continental-scale simulation of the Antarctic katabatic wind regime. J. Climate, 4(2), 135–146. Petit, J.R., J. Jouzel, M. Pourchet and L. Merlivat. 1982. A detailed study of snow accumulation and stable isotope content in Dome C (Antarctica). J. Geophys. Res., 87(C6), 4301–4308. Pettre´ , P., J.F. Pinglot, M. Pourchet and L. Reynaud. 1986. Accumulation distribution in Terre Ade´lie, Antarctica: effect of meteorological parameters. J. Glaciol., 32(112), 486–500. Picciotto, E., G. Crozaz and W.de Breuck. 1971. Accumulation on the South Pole–Queen Maud Land traverse, 1964–1968. In Crary, A.P., ed. Antarctic snow and ice studies II. Washington, DC, American Geophysical Union, 257–315. (Antarctic Research Series 16.) Pourchet, M., J.F. Pinglot and C. Lorius. 1983. Some meteorological applications of radioactive fallout measurements in Antarctic snows. J. Geophys. Res., 88(C10), 6013–6020. Proposito, M. and 9 others. 2002. Chemical and isotopic snow variability along the 1998 ITASE traverse from Terra Nova Bay to Dome C, East Antarctica [011010.]. Ann. Glaciol., 35, 187–194. Re´my, F., P. Shaeffer and B. Legre´sy. 1999. Ice flow physical processes derived from ERS-1 high-resolution map of Antarctica and Greenland ice sheet. Geophys. J. Int., 139(3), 645–656. Richardson, C., E. Aarholt, S.E. Hamran, P. Holmlund and E. Isaksson. 1997. Spatial snow distribution mapped by radar. J. Geophys. Res., 102(B9), 20343–20353. Richardson, C. and P. Holmlund. 1999. Spatial variability at shallow snow-layer depths in central Dronning Maud Land, East Antarctica. Ann. Glaciol., 29, 10–16. Schwander, J., J. Jouzel, C.U. Hammer, J.R. Petit, R. Udisti and E. Wolff. 2001. A tentative chronology for the EPICA Dome Concordia ice core. Geophys. Res. Lett., 28(22), 4243–4246. Siegert, M.J. 2003. Glacial–interglacial variations in central East Antarctic ice accumulation rates. Quat. Sci. Rev., 22(5–7), 741– 750. Spikes, V.B., G.S. Hamilton, S.A. Arcone, S. Kaspari and P. Mayewski. 2004. Variability in accumulation rates from GPR profiling on the West Antarctic plateau. Ann. Glaciol., 39, In press. Stenni, B. and 8 others. 1999. 200 years of isotope and chemical records in a firn core from Hercules Ne´ve´, northern Victoria Land, Antarctica. Ann. Glaciol., 29, 106–112. Stenni, B. and 6 others. 2002. Eight centuries of volcanic signal and climate change at Talos Dome (East Antarctica). J. Geophys. Res., 107(D9), [ACL3–1 TO ACL3–13]. Testut, L., I.E. Tabacco, C. Bianchi and F. Re´my. 2000. Influence of geometrical boundary conditions on the estimation of rheological parameters. Ann. Glaciol., 30, 102–106. Torinesi, O., M. Fily and C. Genthon. 2003. Variability and trends of summer melt period of Antarctic ice margins since 1980 from microwave sensors. J. Climate, 16(7), 1047–1060. Traversi, R., S. Becagli, E. Castellano, O. Largiuni and R. Udisti. 2000. Stability of chemical species in firn layers from Antarctica. In Colacino, M. and G. Giovannelli, eds. 8th Workshop, Italian Research on the Antarctic Atmosphere. Proceedings. Vol. 69. Bologna, Societa` Italiana di Fisica, 421–443. Traversi, R. and 7 others. 2004. Spatial and temporal distribution of environmental markers from coastal to plateau areas in Antarctica by firn core chemical analysis. Int. J. Environ. Anal. C h e m . , 8 4 ( 6 – 7 ) , 4 5 7 – 4 7 0 . ( d o i : 1 0 . 1 0 8 0 / 03067310310001640393.) Udisti, R., S. Bellandi and G. Piccardi. 1994. Analysis of snow from Antarctica: a critical approach to ion-chromatographic methods. Fresenius’ J. Anal. Chem., 349(4), 289–293. Udisti, R. and 6 others. 2000. Holocene electrical and chemical measurements from the EPICA–Dome C ice core. Ann. Glaciol., 30, 20–26. Udisti, R. and 8 others. 2004. Stratigraphic correlation between the EPICA-Dome C and Vostok ice cores showing the relative variations of snow accumulations over the past 45 kyr. J. Geophys. Res., 109(D8), D08101. (doi:10.1029/ 2003JD004180.) Urbini, S., S. Gandolfi and L. Vittuari. 2001. GPR and GPS data integration: examples of application in Antarctica. Ann. Geofis., 44(4), 687–702. van den Broeke, M.R. and 6 others. 1999. Climate variables along a traverse line in Dronning Maud Land, East Antarctica. J. Glaciol., 45(150), 295–302. van der Veen, C.J. and J.F. Bolzan. 1999. Interannual variability in net accumulation on the Greenland ice sheet: observations and implications for mass balance measurements. J. Geophys. Res., 104(D2), 2009–2014. Vaughan, D.G., H.F.J. Corr, C.S.M. Doake and E.D. Waddington. 1999. Distortion of isochronous layers in ice revealed by ground-penetrating radar. Nature, 398(6725), 323–326. Vincent, C. and M. Pourchet. 2000. Geodetic measurements and accumulation rate at Dome Concordia, December 1999 and January 2000. Grenoble, Laboratoire de Glaciologie et Ge´ophysique de l’Environnement. Institut Franc¸ais pour la Recherche et la Technologie Polaire and Ente per le Nuove Tecnologie, l’Energia e l’Ambiente. (Technical report.) Vittuari, L. and. others. 2004. Space geodesy as a tool for measuring ice surface velocity in the Dome C region and along the ITASE traverse [030626.]. Ann. Glaciol., 39, In press. Waddington, E.D., J. Cunningham and S.L. Harder. 1996. The effects of snow ventilation on chemical concentrations. InWolff, E.W. and R.C. Bales, eds. Chemical exchange between the atmosphere and polar snow. Berlin, etc., Springer-Verlag, 403– 451. (NATO ASI Series I: Global Environmental Change 43.) Wagnon, P., R.J. Delmas and M. Legrand. 1999. Loss of volatile acid species from upper firn layers at Vostok, Antarctica. J. Geophys. Res., 104(D3), 3423–3431. Wendler, G., J.C. Andre´, P. Pettre´, J. Gosink and T. Parish. 1993. Katabatic winds in Ade´ lie coast. In Bromwich, D.H. and C.R. Stearns, eds. Antarctic meteorology and climatology: studies based on automatic weather stations. Washington, DC, American Geophysical Union, 23–46. (Antarctic Research Series 61.) Whillans, I.M. 1975. Effect of inversion winds on topographic detail and mass balance on inland ice sheets. J. Glaciol., 14(70), 85– 90. Wolff, E.W. 1996. Location, movement and reactions of impurities in solid ice. In Wolff, E.W. and R.C. Bales, eds. Chemical exchange between the atmosphere and polar snow. Berlin, etc., Springer-Verlag, 541–560. (NATO ASI Series I: Global Environmental Change 43.)en
dc.description.obiettivoSpecifico3.8. Geofisica per l'ambienteen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorFrezzotti, M.en
dc.contributor.authorPourchet, M.en
dc.contributor.authorFlora, O.en
dc.contributor.authorGandolfi, S.en
dc.contributor.authorGay, M.en
dc.contributor.authorUrbini, S.en
dc.contributor.authorVincent, C.en
dc.contributor.authorBecagli, S.en
dc.contributor.authorGragnani, R.en
dc.contributor.authorProposito, M.en
dc.contributor.authorSeveri, M.en
dc.contributor.authorTraversi, R.en
dc.contributor.authorUdisti, R.en
dc.contributor.authorFily, M.en
dc.contributor.departmentEnte per le Nuove Tecnologie, l’Energia e l’Ambiente, ‘Progetto Clima Globale’, Rome, Italyen
dc.contributor.departmentLaboratoire de Glaciologie et Géophysique de l’Environnement, CNRS, Saint Martin d’Hères, Franceen
dc.contributor.departmentDipartimento di Scienze Geologiche, Ambientali e Marine, University of Trieste, Trieste, Italyen
dc.contributor.departmentDipartimento di Ingegneria delle Strutture, dei Trasporti, delle Acque, del Rilevamento, del Territorio, University of Bologna, Bologna, Italyen
dc.contributor.departmentLaboratoire de Glaciologie et Géophysique de l’Environnement, CNRS, Saint Martin d’Hères, Franceen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentLaboratoire de Glaciologie et Géophysique de l’Environnement, CNRS, Saint Martin d’Hères, Franceen
dc.contributor.departmentDipartimento di Chimica, University of Florence, Florence, Italyen
dc.contributor.departmentEnte per le Nuove Tecnologie, l’Energia e l’Ambiente, ‘Progetto Clima Globale’, Rome, Italyen
dc.contributor.departmentEnte per le Nuove Tecnologie, l’Energia e l’Ambiente, ‘Progetto Clima Globale’, Rome, Italyen
dc.contributor.departmentDipartimento di Chimica, University of Florence, Florence, Italyen
dc.contributor.departmentDipartimento di Chimica, University of Florence, Florence, Italyen
dc.contributor.departmentDipartimento di Chimica, University of Florence, Florence, Italyen
dc.contributor.departmentLaboratoire de Glaciologie et Géophysique de l’Environnement, CNRS, Saint Martin d’Hères, Franceen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptENEA-CRE, Casaccia, Rome, Italy-
crisitem.author.deptLaboratoire de Glaciologie et de Géophysique de I'Environnement, BP96, 38402, Saint Martin d'Hères - France-
crisitem.author.deptDipartimento di Scienze Geologiche, Ambientali e Marine, University of Trieste, Trieste, Italy-
crisitem.author.deptDistart Bologna-
crisitem.author.deptLaboratoire de Glaciologie et Géophysique de l’Environnement, CNRS, Saint Martin d’Hères, France-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptLGGE-
crisitem.author.deptDepartment of Chemistry, University of Florence-
crisitem.author.deptEnte per le Nuove Tecnologie, l’Energia e l’Ambiente, ‘Progetto Clima Globale’, Rome, Italy-
crisitem.author.deptEnte per le Nuove Tecnologie, l’Energia e l’Ambiente, Roma, Italy-
crisitem.author.deptDipartimento di Chimica, University of Florence, Florence, Italy-
crisitem.author.deptDipartimento di Chimica, University of Florence, Florence, Italy-
crisitem.author.deptDipartimento di Chimica, University of Florence, Florence, Italy-
crisitem.author.deptLGGE Grenoble-
crisitem.author.orcid0000-0002-8053-4197-
crisitem.author.orcid0000-0003-3633-4849-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent02. Cryosphere-
crisitem.classification.parent02. Cryosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
JGlac_Frezzotti2005.pdfmain article2.73 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

84
checked on Feb 10, 2021

Page view(s) 50

232
checked on Apr 17, 2024

Download(s)

30
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric