Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4045
DC FieldValueLanguage
dc.contributor.authorallFrezzotti, M.; Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, ‘Progetto Clima Globale’, Rome, Italyen
dc.contributor.authorallPourchet, M.; Laboratoire de Glaciologie et Géophysique de l’Environnement, CNRS, Saint Martin d’Hères, Franceen
dc.contributor.authorallFlora, O.; Dipartimento di Scienze Geologiche, Ambientali e Marine, University of Trieste, Trieste, Italyen
dc.contributor.authorallGandolfi, S.; Dipartimento di Ingegneria delle Strutture, dei Trasporti, delle Acque, del Rilevamento, del Territorio, University of Bologna, Bologna, Italyen
dc.contributor.authorallGay, M.; Laboratoire de Glaciologie et Géophysique de l’Environnement, CNRS, Saint Martin d’Hères, Franceen
dc.contributor.authorallUrbini, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallVincent, C.; Laboratoire de Glaciologie et Géophysique de l’Environnement, CNRS, Saint Martin d’Hères, Franceen
dc.contributor.authorallBecagli, S.; Dipartimento di Chimica, University of Florence, Florence, Italyen
dc.contributor.authorallGragnani, R.; Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, ‘Progetto Clima Globale’, Rome, Italyen
dc.contributor.authorallProposito, M.; Ente per le Nuove Tecnologie, l’Energia e l’Ambiente, ‘Progetto Clima Globale’, Rome, Italyen
dc.contributor.authorallSeveri, M.; Dipartimento di Chimica, University of Florence, Florence, Italyen
dc.contributor.authorallTraversi, R.; Dipartimento di Chimica, University of Florence, Florence, Italyen
dc.contributor.authorallUdisti, R.; Dipartimento di Chimica, University of Florence, Florence, Italyen
dc.contributor.authorallFily, M.; Laboratoire de Glaciologie et Géophysique de l’Environnement, CNRS, Saint Martin d’Hères, Franceen
dc.date.accessioned2008-09-10T06:14:32Zen
dc.date.available2008-09-10T06:14:32Zen
dc.date.issued2004-12en
dc.identifier.urihttp://hdl.handle.net/2122/4045en
dc.description.abstractSurface mass balance (SMB) distribution and its temporal and spatial variability is an essential input parameter in mass balance studies. Different methods were used, compared and integrated (stake farms, ice cores, snow radar, surface morphology, remote sensing) at eight sites along a transect from Terra Nova Bay (TNB) to Dome C (DC) (East Antarctica), to provide detailed information on the SMB. Spatial variability measurements show that the measured maximum snow accumulation (SA) in a 15 km area is well correlated to firn temperature. Wind-driven sublimation processes, controlled by the surface slope in the wind direction, have a huge impact (up to 85% of snow precipitation) on SMB and are significant in terms of past, present and future SMB evaluations. The snow redistribution process is local and has a strong impact on the annual variability of accumulation. The spatial variability of SMB at the kilometre scale is one order of magnitude higher than its temporal variability (20–30%) at the centennial time scale. This high spatial variability is due to wind-driven sublimation. Compared with our SMB calculations, previous compilations generally over-estimate SMB, up to 65% in some areas.en
dc.language.isoEnglishen
dc.publisher.nameSpringer - Verlagen
dc.relation.ispartofClimate Dynamicsen
dc.relation.ispartofseries7 / 23 (2004)en
dc.subjectEast Antarcticaen
dc.subjectSurface Mass Balanceen
dc.subjectSnow accumulationen
dc.subjectGPRen
dc.subjectGPSen
dc.titleNew estimations of precipitation and surface sublimation in East Antarctica from snow accumulation measurementsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber803-813en
dc.subject.INGV02. Cryosphere::02.02. Glaciers::02.02.02. Cryosphere/atmosphere Interactionen
dc.subject.INGV02. Cryosphere::02.02. Glaciers::02.02.06. Mass balanceen
dc.identifier.doi10.1007/s00382-004-0462-5en
dc.relation.referencesAlley RB (1988) Concerning the deposition and diagenesis of strata in polar firn. J Glaciol 34(118):283–290 Alley RB, Saltzman ES, Cuffey KM, Fitzpatrick (1990) Summertime formation of depth hoar in central Greenland. Geophys Res Lett 17(12):2,393–2,396 Ball FK (1960) Winds on the ice slopes of Antarctica. In: Antarctic meteorology. Pergamon Press, New York, pp 9–16 Bintanja R (1998) The contribution of snowdrift sublimation to the surface mass balance of Antarctica. Ann Glaciol 27:251–259 Bintanja R (1999) On the glaciological, meteorological, and climatological significance of Antarctic blue ice areas. Rev Geophys 37(3):337–359 Bintanja R, Lilienthal H, Tug H (2001) Observations of snowdrift over Antarctic snow and blue-ice surfaces. Ann Glaciol 32:168– 174 Bintanja R, Reijmer CH (2001) A simple parameterization for snowdrift sublimation over Antarctic snow surface. J Geophys Res 106(D23):31,739–31,748 Black HP, Budd W (1964) Accumulation in the region of Wilkes, Wilkes Land, Antarctica. J Glaciol 5(37):3–15 Bromwich DH (1988) Snowfall in high southern latitudes. Rev Geophys 26(1):149–168 Bromwich DH, Weaver CJ (1983) Latitudinal displacement from main moisture source controls d18O of snow in coastal Antarctica. Nature 30:145–147 Cagnati A, Valt M, Casacchia R, Salvatori R (2003) Snowcover in Antarctica: physical and morphological features of surface layers. Terra Antartica Rep 8:5–10 Cullather RI, Bromwich DH, Van Woert ML (1998) Spatial and temporal variability of Antarctic precipitation from atmospheric methods. J Climate 11:334–367 Ekaykin AA, Lipenkov VYA, Kuzmina IN, Petit JR, Masson- Delmotte V, Johnsen SJ. The changes in isotope composition and accumulation of snow at Vostok Station over the past 200 years. Ann Glaciol 39 (in press) Fortuin JPF, Oerlemans J (1990) The parameterization of the annual surface temperature and mass balance of Antarctica. Ann Glaciol 14:78–84 Frezzotti M, Flora O (2002) Ice dynamics and climatic surface parameters in East Antarctica from Terra Nova Bay to Talos Dome and Dome C: ITASE Italian Traverses. Terra Antartica 9(1):47–54 Frezzotti M, Gandolfi S, Urbini S (2002a) Snow megadune in Antarctica: sedimentary structure and genesis. J Geophys Res 107(D18):4,344. Doi: 10.1029/2001JD000673 Frezzotti M, Gandolfi S, La Marca F, Urbini S (2002b) Snow dune and glazed surface in Antarctica: new field and remote sensing data. Ann Glaciol 34:81–88 Frezzotti M, Pourchet M, Flora O, Gandolfi S, Gay M, Urbini S, Vincent C, Becagli S, Gragnani R, Proposito M, Severi M, Traversi R, Udisti R, Fily M Spatial and temporal variability of the surface mass balance in East Antarctica from traverse data. J Glaciol (in press) Fujii Y, Kusunoki K (1982) The role of sublimation and condensation in the formation of ice sheet surface at Mizuho Station, Antarctica. J Geophys Res 87(C6):4,293–4,300 Galle´ e H (1998) Simulation of blowing snow over the Antarctic ice sheet. Ann Glaciol 26:203–206 Galle´ e H, Guyomarch G, Brun E (2001) Impact of snow drift on the Antarctic Ice Sheet surface mass balance: possible sensitivity to snow-surface properties. Boundary-Layer Meteorol 99:1–19 Genthon C, Braun A (1995) ECMWF analyses and predictions of surface climate of Greenland and Antarctica. J Climate 8(10):2,324–2,332 Genthon C, Krinner G (1998) Convergence and disposal of energy and moisture on the Antarctic polar cap from ECMWF reanalyses and forecasts. J Climate 11:1,703–1,716 Genthon C, Krinner G (2001) The Antarctic surface mass balance and systematic biases in GCMs. J Geophys Res 106:20,653– 20,664 Giovinetto MB, Bromwich DH, Wendler G (1992) Atmospheric net transport of water vapor and latent heat across 70 S. J Geophys Res 97(D1):917–930 Giovinetto MB, Waters NM, Bentley CR (1990) Dependence of Antarctic surface mass balance on temperature, elevation, and distance to open ocean. J Geophys Res 95(D4):3,517–3,531 Giovinetto MB, Zwally HJ (2000) Spatial distribution of net surface accumulation on the Antarctic ice sheet. Ann Glaciol 3:171–178 Goodwin ID, Higham M, Allison I, Jaiwen R (1994) Accumulation variation in eastern Kemp Land, Antarctica. Ann Glaciol 20:202–206 Gow AJ (1965) On the accumulation and seasonal stratification of snow at the South Pole. J Glaciol 5:467–477 Jouzel J, Merlivat L, Petit JR, Lorius C (1983) Climatic information over the last century deduced from a detailed isotopic record in the South Pole snow. J Geophys Res 88(C4):2,693– 2,703 King JC, Anderson PS, Mann GW (2001) The seasonal cycle of sublimation at Halley, Antarctica. J Glaciol 47(156):1–8 King JC, Turner J (1997) Antarctic meteorology and climatology. Cambridge University Press, Atmospheric and Space Science Series, Cambridge, p 408 Kobayashi S, Ishida T (1979) Interaction between wind and snow surface. Boundary Layer Meteorol 16:35–47 Kobayashi S, Ishikawa N, Ohata T (1985) Katabatic snow storms in stable atmospheric conditions at Mizuho Station, Antarctica. Ann Glaciol 6:229–231 Kodama Y, Wendler G, Gosink J (1985) The effect of blowing snow on katabatic winds in Antarctica. Ann Glaciol 6:59–62 Koerner RM (1971) A stratigraphic methods of determining the snow accumulation rate at Plateau Station, Antarctica, and application to South Pole—Queen Maud Land traverse 2, 1965–1966. In: Crary AP (ed) Antarctic snow and ice studies II. American Geophysical Union, Washington. Antarctic Res Ser 16:225–238 Liston GE, Winther JG, Bruland O, Elvehoy H, Sand K, Karlof L (2000) Snow and blue-ice distribution patterns on the coastal Antarctic ice sheet. Antarctic Sci 12(1):69–79 Loewe F (1970) Contributions to the glaciology of the Antarctic. J Glaciol 2(19):657–665 Magand O, Frezzotti M, Pourchet M, Stenni B, Genoni L, Fily M Climate variability along latitudinal and longitudinal transects in East Antarctica. Ann Glaciol 39 (in press) Mayewski PA, Goodwin ID (1999) Antarctic’s role pursued in global climate change. Eos Trans 80:398–400 Muszynski I, Birchfield GE (1985) The dependence of Antarctic accumulation rates on surface temperature and elevation. Tellus 37A:204–208 Noone D, Turner J, Mulvaney R (1999) Atmospheric signals and characteristics of accumulation in Dronning Maud Land, Antarctica. J Geophys Res 104(D16):19,191–19,211 Parish TR, Bromwich DH (1991) Continental scale of the Antarctic katabatic wind regime. J Climate 4(2):135–146 Pettre´ P, Pinglot JF, Pourchet M, Reynaud L (1986) Accumulation in Terre Ade´ lie, Antarctica: effect of meteorological parameters. J Glaciol 32:486–500 Picciotto E, Crozaz G, De Breuk W (1971) Accumulation on the south Pole-Queen Maud Land Traverse, 1964–1968. In: Crary AP (ed) Antarctic snow and ice studies II. American Geophysical Union, Washington. Antarctic Res Series 16:257–291 Pomeroy JW (1989) A process-based model of snow drifting. Ann Glaciol 13:237–240 Pourchet M, Bartarya SK, Maignan M, Jouzel J, Pinglot JF, Aristarain A, Furdada G, Kotlyakov VM, Mosley-Thompson E, Preiss N, Young NW (1997) Distribution and fall out of 137Cs and other radionuclides over Antarctica. J Glaciol 43(145):435– 445 Proposito M, Becagli S, Castellano E, Flora O, Gragnani R, Stenni B, Traversi R, Udisti R, Frezzotti M (2002) Chemical and isotopic snow variability along the 1998 ITASE traverse from Terra Nova Bay to DC (East-Antarctica). Ann Glaciol 35:187– 194 Re´ my F, Testut L, Legre´ sy B (2002) Random fluctuations of snow accumulation over Antarctica and their relation to sea level change. Climate Dyn 19:267–276 Richardson C, Aarholt E, Hamran SE, Holmlund P, Isaksson E (1997) Spatial snow distribution mapped by radar. J Geophys Res 102(B9):20,343–20,353 Rignot E, Thomas RH (2002) Mass balance of polar ice sheets. Science 297:1,502–1,506 Robin G de Q (1977) Ice cores and climate change. Philos Trans R Soc Lond Ser B 280:143–168 Stearns CR, Weidner GA (1993) Sensible and latent heat flux estimates in Antarctica. In: Bromwich DH, Stearns CR (eds) Antarctic meteorology and climatology: studies based on automatic weather stations. American Geophysical Union, Washington. Antarctic Res Ser 61:109–138 Stuart AW, Heine AJ (1961) Glaciological work of the 1959–1960 US Victoria Land Traverse. J Glaciol 997–1002 Takahashi S, Naruse R, Masayoshi N, Mae S (1988) A bare ice field in East Queen Maud Land, Antarctica, caused by horizontal divergence of snow. Ann Glaciol 11:150–160 Turner J, Connolley WM, Leonard S, Marshal GJ, Vaughan DG (1999) Spatial and temporal variability of net snow accumulation over the Antarctic from ECMWF re-analysis project data. Int J Climatol 19:697–724 Turner J, Lachlan-Cope TA, Marshall GJ, Morris EM, Mulvaney R, Winter W (2002) Spatial variability of Antarctic Peninsula net surface mass balance. J Geophys Res 107(D13):4,173. DOI 10.1029/2001JD000755 van der Broeke M (1997) Spatial and temporal variation of sublimation on Antarctica: result of a high-resolution general circulation model. J Geophys Res 102:29,765–29,777 van den Broeke MR, Winther JG, Isaksson E, Pinglot JF, Karlof L, Eiken T, Conrads L (1999) Climate variables along a traverse line in Dronning Maud Land, East Antarctica. J Glaciol 45(150):295–302 van Lipzig NPM, van Meijgaard E, Oerlemans J (2002) The spatial and temporal variability of the surface mass balance in Antarctica: result from a regional atmospheric climate model. Int J Climatol 22:1,197–1,217 Vaughan DG, Bamber JL, Giovinetto M, Russell J, Cooper PR (1999) Reassessment of net surface mass balance in Antarctica. J Climate 12:933–946 Watanabe O (1978) Distribution of surface features of snow cover in Mizuho Plateau. Mem Natl Inst Polar Res Spec Issue 7:154– 181 Wendler G, Andre´ JC, Pettre´ P, Gosink J, Parish T (1993) Katabatic winds in Ade´ lie Coast. In: Bromwich DH, Stearns CR (eds) Antarctic meteorology and climatology: studies based on automatic weather stations. American Geophysical Union, Washington. Antarctic Res Ser 61:23–46 Whillans IM (1975) Effect of inversion winds on topographic detail and mass balance on inland ice sheets. J Glaciol 14(70):85–90 Young NW, Pourchet M, Kotlyakov VM, Korolev PA and Dyugerov MB (1982) Accumulation distribution in the IAGP area, Antarctica: 90 E–150 E. Ann Glaciol 3:333–338 Zibordi G, Frezzotti M (1996) Orographic clouds in north Victoria Land from AVHRR images. Polar rec 32(183):317–324en
dc.description.obiettivoSpecifico3.8. Geofisica per l'ambienteen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorFrezzotti, M.en
dc.contributor.authorPourchet, M.en
dc.contributor.authorFlora, O.en
dc.contributor.authorGandolfi, S.en
dc.contributor.authorGay, M.en
dc.contributor.authorUrbini, S.en
dc.contributor.authorVincent, C.en
dc.contributor.authorBecagli, S.en
dc.contributor.authorGragnani, R.en
dc.contributor.authorProposito, M.en
dc.contributor.authorSeveri, M.en
dc.contributor.authorTraversi, R.en
dc.contributor.authorUdisti, R.en
dc.contributor.authorFily, M.en
dc.contributor.departmentEnte per le Nuove Tecnologie, l’Energia e l’Ambiente, ‘Progetto Clima Globale’, Rome, Italyen
dc.contributor.departmentLaboratoire de Glaciologie et Géophysique de l’Environnement, CNRS, Saint Martin d’Hères, Franceen
dc.contributor.departmentDipartimento di Scienze Geologiche, Ambientali e Marine, University of Trieste, Trieste, Italyen
dc.contributor.departmentDipartimento di Ingegneria delle Strutture, dei Trasporti, delle Acque, del Rilevamento, del Territorio, University of Bologna, Bologna, Italyen
dc.contributor.departmentLaboratoire de Glaciologie et Géophysique de l’Environnement, CNRS, Saint Martin d’Hères, Franceen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentLaboratoire de Glaciologie et Géophysique de l’Environnement, CNRS, Saint Martin d’Hères, Franceen
dc.contributor.departmentDipartimento di Chimica, University of Florence, Florence, Italyen
dc.contributor.departmentEnte per le Nuove Tecnologie, l’Energia e l’Ambiente, ‘Progetto Clima Globale’, Rome, Italyen
dc.contributor.departmentEnte per le Nuove Tecnologie, l’Energia e l’Ambiente, ‘Progetto Clima Globale’, Rome, Italyen
dc.contributor.departmentDipartimento di Chimica, University of Florence, Florence, Italyen
dc.contributor.departmentDipartimento di Chimica, University of Florence, Florence, Italyen
dc.contributor.departmentDipartimento di Chimica, University of Florence, Florence, Italyen
dc.contributor.departmentLaboratoire de Glaciologie et Géophysique de l’Environnement, CNRS, Saint Martin d’Hères, Franceen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptENEA-CRE, Casaccia, Rome, Italy-
crisitem.author.deptLaboratoire de Glaciologie et de Géophysique de I'Environnement, BP96, 38402, Saint Martin d'Hères - France-
crisitem.author.deptDipartimento di Scienze Geologiche, Ambientali e Marine, University of Trieste, Trieste, Italy-
crisitem.author.deptDistart Bologna-
crisitem.author.deptLaboratoire de Glaciologie et Géophysique de l’Environnement, CNRS, Saint Martin d’Hères, France-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptLGGE-
crisitem.author.deptDepartment of Chemistry, University of Florence-
crisitem.author.deptEnte per le Nuove Tecnologie, l’Energia e l’Ambiente, ‘Progetto Clima Globale’, Rome, Italy-
crisitem.author.deptEnte per le Nuove Tecnologie, l’Energia e l’Ambiente, Roma, Italy-
crisitem.author.deptDipartimento di Chimica, University of Florence, Florence, Italy-
crisitem.author.deptDipartimento di Chimica, University of Florence, Florence, Italy-
crisitem.author.deptDipartimento di Chimica, University of Florence, Florence, Italy-
crisitem.author.deptLGGE Grenoble-
crisitem.author.orcid0000-0002-8053-4197-
crisitem.author.orcid0000-0003-3633-4849-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent02. Cryosphere-
crisitem.classification.parent02. Cryosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
CD_Frezzotti_2004.pdfmain article485.06 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

93
checked on Feb 10, 2021

Page view(s) 20

363
checked on Mar 27, 2024

Download(s)

30
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric