Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/4000
DC FieldValueLanguage
dc.contributor.authorallFiorucci, I.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallMuscari, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallBianchi, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallDi Girolamo, P.; Università della Basilicataen
dc.contributor.authorallEsposito, F.; Università della Basilicataen
dc.contributor.authorallGrieco, G.; Università della Basilicataen
dc.contributor.authorallSumma, D.; Università della Basilicataen
dc.contributor.authorallBianchini, G.; Istituto di Fisica Applicata, CNRen
dc.contributor.authorallPalchetti, L.; Istituto di Fisica Applicata, CNRen
dc.contributor.authorallCacciani, M.; Università di Roma "La Sapienza"en
dc.contributor.authorallDi Iorio, T.; Università di Roma "La Sapienza"en
dc.contributor.authorallPavese, G.; Istituto di Metodologie per l'Analisi Ambientale, CNRen
dc.contributor.authorallCimini, D.; Università di L'Aquilaen
dc.contributor.authorallde Zafra, R.; State University of New York at Stony Brooken
dc.date.accessioned2008-07-31T10:45:55Zen
dc.date.available2008-07-31T10:45:55Zen
dc.date.issued2008-07en
dc.identifier.urihttp://hdl.handle.net/2122/4000en
dc.description.abstractObservations of very low amounts of precipitable water vapor (PWV) by means of the Ground-Based Millimeter wave Spectrometer (GBMS) are discussed. Low amounts of column water vapor (between 0.5 and 4 mm) are typical of high mountain sites and polar regions, especially during winter, and are difficult to measure accurately because of the lack of sensitivity of conventional instruments to such low PWV contents. The technique used involves the measurement of atmospheric opacity in the range between 230 and 280 GHz with a spectral resolution of 4 GHz, followed by the conversion to precipitable water vapor using a linear relationship. We present the intercomparison of this data set with simultaneous PWV observations obtained with Vaisala RS92k radiosondes, a Raman lidar, and an IR Fourier transform spectrometer. These sets of measurements were carried out during the primary field campaign of the Earth Cooling by Water vapor Radiation (ECOWAR) project which took place at Breuil-Cervinia (45.9N, 7.6E, elevation 1990 m) and Plateau Rosa (45.9N, 7.7E, elevation 3490 m), Italy, from 3 to 16 March 2007. GBMS PWV measurements show a good agreement with the other three data sets exhibiting a mean difference between observations of 9%. The considerable number of data points available for the GBMS versus lidar PWV correlation allows an additional analysis which indicates negligible systematic differences between the two data sets.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseries/ 113 (2008)en
dc.subjectmillimeter wave spectroscopyen
dc.subjectcolumn water vaporen
dc.titleMeasurements of low amounts of precipitable water vapor by millimeter wave spectroscopy: An intercomparison with radiosonde, Raman lidar, and Fourier transform infrared dataen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberD14314en
dc.identifier.URLhttp://www.agu.org/journals/jd/jd0814/2008JD009831/en
dc.subject.INGV01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structureen
dc.identifier.doi10.1029/2008JD009831en
dc.relation.referencesBhawar, R., et al. (2008), Spectrally resolved observations of atmospheric emitted radiance in the H2O rotation band, Geophys. Res. Lett., 35, L04812, doi:10.1029/2007GL032207. Bianchini, G., L. Palchetti, and B. Carli (2006), A wide-band nadir-sounding spectroradiometer for the characterization of the Earth’s outgoing long-wave radiation, Proc. SPIE Int. Soc. Opt. Eng., 6361, 63610A. Bianchini, G., L. Palchetti, and A. Baglioni (2007), Far infrared spectrally resolved broadband emission of the atmosphere from Monte Morello and Monte Gomito near Florence, Proc. SPIE Int. Soc. Opt. Eng., 6745, 6745– 6761. Buehler, S. A., P. Eriksson, T. Kuhn, A. von Engeln, and C. Verdes (2005), ARTS, the atmospheric radiative transfer simulator, J. Quant. Spectrosc. Radiat. Transfer, 91, 65– 93, doi:10.1016/j.jqsrt.2004.05.051. Calisse, P. G., M. C. B. Ashley, M. G. Burton, M. A. Phillips, J. W. V. Storey, S. J. E. Radford, and J. B. Peterson (2004), Submillimeter site testing at Dome C, Antarctica, Publ. Astron. Soc. Aust., 21, 1–18, doi:10.1071/AS03018. Carli, B., A. Barbis, J. E. Harries, and L. Palchetti (1999), Design of an efficient broadband far-infrared Fourier-transform spectrometer, Appl. Opt., 38, 3945– 3950, doi:10.1364/AO.38.003945. Cimini, D., E. R. Westwater, A. J. Gasiewski, M. Klein, V. Y. Leuski, and J. C. Liljegren (2007), Ground-based millimeter-and submillimiter-wave observations of low vapor and liquid water contents, IEEE Trans. Geosci. Remote Sens., 45, 2169– 2180, doi:10.1109/TGRS.2007.897450. Clough, S. A., M. J. Iacono, and J.-L. Moncet (1992), Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor, J. Geophys. Res., 97(D14), 15,761–15,785. Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown (2005), Atmospheric radiative transfer modeling: A summary of the AER codes, J. Quant. Spectrosc. Radiat. Transfer, 91, 233–244, doi:10.1016/j.jqsrt.2004.05.058. de Zafra, R. L. (1995), The ground-based measurements of stratospheric trace gases using quantitative millimeter wave emission spectroscopy, in Diagnostic Tools in Atmospheric Physics, Proc. of the Int. Sch. of Phys. ‘‘Enrico Fermi,’’ vol. 124, 23– 54, Soc. It. di Fis., Bologna, Italy. de Zafra, R. L., A. Parrish, P. M. Solomon, and J. W. Barrett (1983), A quasi continuous record of atmospheric opacity at l = 1.1 mm over 34 days at Mauna Kea observatory, Int. J. Infrared Millimeter Waves, 4, 757–765, doi:10.1007/BF01009694. Di Girolamo, P., R. Marchese, D. N. Whiteman, and B. B. Demoz (2004), Rotational Raman lidar measurements of atmospheric temperature in the UV, Geophys. Res. Lett., 31, L01106, doi:10.1029/2003GL018342. Esposito, F., G. Grieco, G. Masiello, G. Pavese, R. Restieri, C. Serio, and V. Cuomo (2007), Intercomparison among line-parameters spectroscopic databases using downwelling spectral radiance, Q. J. R. Meteorol. Soc., 133, 191– 202. Evans, K. F., and G. L. Stephens (1995), Microwave radiative transfer through clouds composed of realistically shaped ice crystals. Part II. Remote sensing of ice clouds, J. Atmos. Sci., 52, 2058 – 2072, doi:10.1175/1520-0469(1995)052<2058:MRTTCC>2.0.CO;2. Han, Y., and E. R. Westwater (2000), Analysis and improvement of tipping calibration for ground-based microwave radiometers, IEEE Trans. Geosci. Remote Sens., 38, 1260– 1277, doi:10.1109/36.843018. Held, I. M., and B. Soden (2000), Water vapor feedback and global warming, Annu. Rev. Energy Environ., 25, 441 –475, doi:10.1146/ annurev.energy.25.1.441. Hewison, T. J., D. Cimini, L. Martin, C. Gaffard, and J. Nash (2006), Validating clear air absorption model using ground-based microwave radiometers and vice-versa, Meteorol. Z., 15(1), 27 – 36, doi:10.1127/ 0941-2948/2006/0097. Hirvensalo, J., J. Wahrn, and H. Jauhiainen (2002), New Vaisala RS92 GPS radiosonde offers high level of performance and GPS wind data availability, paper presented at 12th Symposium on Meteorological Observations and Instrumentation, Am. Meteorol. Soc., Long Beach, Calif. James, F. (1994), Minuit, function minimization and error analysis, reference manual, CERN Program Libr. Long Writeup, D506, Comput. and Networks Div., Eur. Organ. for Nucl. Res., Geneva, Switzerland. Jauhiainen, H., and M. Lehmuskero (2005), Performance of the Vaisala radiosonde RS92-SGP and Vaisala DigiCORA sounding system MW31 in theWMOMauritius radiosonde intercomparison, technical note,Vaisala Oyi, Helsinki. (Available at http://www.vaisala.com/weather/products/ soundingequipment/radiosondes/rs92/mauritiustest) Klein, M., and A. J. Gasieweski (2000), Nadir sensitivity of passive millimeter and submillimeter wave channels to clean air temperature and water vapor variations, J. Geophys. Res., 105(D13), 17,481 – 17,511, doi:10.1029/2000JD900089. Liebe, H. J., and D. H. Layton (1987), Millimeter-wave properties of the atmosphere: Laboratory studies and propagation modeling, NTIA-Rep., 87– 224, Natl. Telecommun. and Inf. Admin., Boulder, Colo. Liebe, H. J., G. A. Hufford, and M. G. Cotton (1993), Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz, paper 542 presented at AGARD 52nd Specialists’ Meeting of the Electromagnetic Wave Propagation Panel, Advisory Group for Aerospace Res. and Dev., Palma de Mallorca, Spain, 1 – 10 March. Liljegren, J. C., S.-A. Boukabara, K. Cady-Pereira, and S. A. Clough (2005), The effect of the half-width of the 22-GHz water vapor line on retrievals of temperature and water vapor profiles with a 12-channel microwave radiometer, IEEE Trans. Geosci. Remote Sens., 43, 1102 – 1108, doi:10.1109/TGRS.2004.839593. Liou, K. N. (1992), Radiation and Cloud Processes in the Atmosphere, 487 pp., Oxford Univ. Press, New York. Liu, G., and J. A. Curry (1998), Remote sensing of ice water characteristics in tropical clouds using aircraft microwave measurements, J. Appl. Meteorol., 37, 337 – 355, doi:10.1175/1520-0450(1998)037<0337: RSOIWC>2.0.CO;2. Marsden, D., and F. P. J. Valero (2004), Observation of water vapour greenhouse absorption over the Gulf of Mexico using aircraft and satellite data, J. Atmos. Sci., 61, 745 – 753, doi:10.1175/1520-0469(2004)061<0745: OOWVGA>2.0.CO;2. Miloshevich, L. M., A. Paukkunen, H. Vo¨mel, and S. J. Oltmans (2004), Development and validation of a time lag correction for Vaisala radiosonde humidity measurements, J. Atmos. Oceanic Technol., 21, 1305 – 1327, doi:10.1175/1520-0426(2004)021<1305:DAVOAT>2.0.CO;2. Miloshevich, L.M., H.Vo¨mel, D. N.Whiteman, B. M. Lesht, F. J. Schmidlin, and F. Russo (2006), Absolute accuracy of water vapour measurements from six operational radiosonde types launched during AWEX-G and implications for AIRS validation, J. Geophys. Res., 111, D09S10, doi:10.1029/2005JD006083. Muscari, G., A. G. di Sarra, R. L. de Zafra, F. Lucci, F. Baordo, F. Angelini, and G. Fiocco (2007), Middle atmospheric O3, CO, N2O, HNO3, and temperature profiles during the warm Arctic winter 2001– 2002, J. Geophys. Res., 112, D14304, doi:10.1029/2006JD007849. Palchetti, L., C. Belotti, G. Bianchini, F. Castagnoli, B. Carli, U. Cortesi, M. Pellegrini, C. Camy-Peyret, P. Jeseck, and Y. Te´ (2006), First spectral measurement of the Earth’s upwelling emission using an uncooled wideband Fourier transform spectrometer, Atmos. Chem. Phys., 6, 5025– 5030. Palchetti, L., G. Bianchini, F. Castagnoli, B. Carli, C. Serio, F. Esposito, V. Cuomo, R. Rizzi, and T. Maestri (2005), Breadboard of a Fouriertransform spectrometer for the Radiation Explorer in the Far Infrared atmospheric mission, Appl. Opt., 44, 2870 – 2878, doi:10.1364/ AO.44.002870. Parrish, A., R. L. de Zafra, J. W. Barrett, P. Solomon, and B. Connor (1987), Additional atmospheric opacity measurements at l = 1.1 mm from Mauna Kea observatory, Hawaii, Int. J. Infrared Millimeter Waves, 8, 431– 440, doi:10.1007/BF01013256. Parrish, A., R. L. de Zafra, P. M. Solomon, and J. W. Barrett (1988), A ground-based technique for millimeter wave spectroscopic observations of stratospheric trace constituents, Radio Sci., 23, 106– 118, doi:10.1029/ RS023i002p00106. Paukkunen, A., V. Antikainen, and H. Jauhiainen (2001), Accuracy and performance of the new Vaisala RS90 radiosonde in operational use, paper presented at 11th Symposium on Meteorological Observations and Instrumentation, Am. Meteorol. Soc., Albuquerque, N. M., 14–18 Jan. Raval, A., and V. Ramanathan (1989), Observational determination of the greenhouse effect, Nature, 342, 758– 761, doi:10.1038/342758a0. Renbarger, T., J. L. Dotson, and G. Novak (1998), Measurements of submillimeter polarization induced by oblique reflection from aluminum alloy, Appl. Opt., 37, 6643– 6647, doi:10.1364/AO.37.006643. Rosenkranz, P. W. (1998), Water vapor microwave continuum absorption: A comparison of measurements and models, Radio Sci., 33, 919– 928, doi:10.1029/98RS01182. Rosenkranz, P. W. (1999), Correction to ‘‘Water vapor microwave continuum absorption: a comparison of measurements and models’’, Radio Sci., 34, 1025, doi:10.1029/1999RS900020. Rosenkranz, P. W. (2003), Rapid radiative transfer model for AMSU/HSB channels, IEEE Trans. Geosci. Remote Sens., 41, 362– 368, doi:10.1109/ TGRS.2002.808323. Rothman, L. S., et al. (2003), The HITRAN molecular spectroscopic database: Edition of 2000 including updates through 2001, J. Quant. Spectrosc. Radiat. Transfer, 82, 5 – 44, doi:10.1016/S0022-4073(03)00146-8. Rowe, P. M., L. M. Miloshevich, D. D. Turner, and V. P. Walden (2008), Dry bias in Vaisala RS90 radiosonde humidity profiles over Antarctica, J. Atmos. Oceanic Technol., doi:10.1175/2008JTECHA1009.1, in press. Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller (Eds.) (2007), Climate Change 2007: The Physical Science Basis—Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 996 pp., Cambridge Univ. Press, Cambridge, U.K. Vo¨mel, H., H. Selkirk, L. Miloshevich, J. Valverde-Canossa, J. Valde`s, E. Kyro¨ , R. Kivi, W. Stolz, G. Peng, and J. A. Diaz (2007), Radiation dry bias of the Vaisala RS92 humidity sensor, J. Atmos. Oceanic Technol., 24, 953– 963, doi:10.1175/JTECH2019.1. Wa¨hrn, J., I. Rekikoski, H. Jauhiainen, and J. Hirvensalo (2004), New Vaisala radiosonde RS92: Testing and results from the field, paper presented at Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Am. Meteorol. Soc., Seattle,Wash. Whiteman, D. N., S. H. Melfi, and R. A. Ferrare (1992), Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere, Appl. Opt., 31, 3068– 3082. Zammit, C. C., and P. A. R. Ade (1981), Zenith atmospheric attenuation measurements at millimetre and sub-millimetre wavelengths, Nature, 293, 550– 552, doi:10.1038/293550a0.en
dc.description.obiettivoSpecifico1.8. Osservazioni di geofisica ambientaleen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorFiorucci, I.en
dc.contributor.authorMuscari, G.en
dc.contributor.authorBianchi, C.en
dc.contributor.authorDi Girolamo, P.en
dc.contributor.authorEsposito, F.en
dc.contributor.authorGrieco, G.en
dc.contributor.authorSumma, D.en
dc.contributor.authorBianchini, G.en
dc.contributor.authorPalchetti, L.en
dc.contributor.authorCacciani, M.en
dc.contributor.authorDi Iorio, T.en
dc.contributor.authorPavese, G.en
dc.contributor.authorCimini, D.en
dc.contributor.authorde Zafra, R.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentUniversità della Basilicataen
dc.contributor.departmentUniversità della Basilicataen
dc.contributor.departmentUniversità della Basilicataen
dc.contributor.departmentUniversità della Basilicataen
dc.contributor.departmentIstituto di Fisica Applicata, CNRen
dc.contributor.departmentIstituto di Fisica Applicata, CNRen
dc.contributor.departmentUniversità di Roma "La Sapienza"en
dc.contributor.departmentUniversità di Roma "La Sapienza"en
dc.contributor.departmentIstituto di Metodologie per l'Analisi Ambientale, CNRen
dc.contributor.departmentUniversità di L'Aquilaen
dc.contributor.departmentState University of New York at Stony Brooken
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptDip. Ingegeneria e Fisica dell’Ambiente, Università della Basilicata, Potenza, Italy-
crisitem.author.deptDipartimento di Ingegeneria e Fisica dell’Ambiente, Universita` della Basilicata, Potenza, Italy-
crisitem.author.deptCentro Euro-Mediterraneo per i cambiamenti Climatici, Bologna, Italy-
crisitem.author.deptUniversità della Basilicata-
crisitem.author.deptIstituto di Fisica Applicata Nello Carrara, CNR, Sesto Fiorentino, Italy-
crisitem.author.deptIstituto di Fisica Applicata Nello Carrara, CNR, Sesto Fiorentino, Italy-
crisitem.author.deptDipartimeno di Fisica, Università di Roma «La Sapienza», Roma, Italy-
crisitem.author.deptENEA, Laboratory for Observations and Analyses of Earth and Climate-
crisitem.author.deptIstituto di Metodologie per l’Analisi Ambientale, IMAA-CNR, Potenza, Italy-
crisitem.author.deptDepartment of Physics and Astronomy, and Institute for Terrestrial and Planetary Atmospheres, State University of New York, Stony Brook, U.S.A.-
crisitem.author.orcid0000-0001-6326-2612-
crisitem.author.orcid0000-0002-0217-5379-
crisitem.author.orcid0000-0002-7420-3164-
crisitem.author.orcid0000-0001-9380-6967-
crisitem.author.orcid0000-0001-8872-8917-
crisitem.author.orcid0000-0002-5962-223X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent01. Atmosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2008JD009831.pdfMain article637.02 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

20
checked on Feb 10, 2021

Page view(s) 50

258
checked on Mar 27, 2024

Download(s)

30
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric