Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3997
DC FieldValueLanguage
dc.contributor.authorallDinarès-Turell, J.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallSagnotti, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallRoberts, A. P.; School of Ocean and Earth Science, University of Southampton, Southampton Oceanography Centre, European Way, Southampton SO14 3ZH, UKen
dc.date.accessioned2008-07-24T07:25:35Zen
dc.date.available2008-07-24T07:25:35Zen
dc.date.issued2002-01-15en
dc.identifier.urihttp://hdl.handle.net/2122/3997en
dc.description.abstractPiston core LC07, located west of the Sicily Strait in the Mediterranean Sea, unambiguously records the Matuyama/ Brunhes (M/B) and the upper Jaramillo polarity reversals, with similar average sediment accumulation rates (SARs) for the Brunhes Chron (2.29 cm/kyr) and late Matuyama Chron C1r.1r (2.19 cm/kyr). We report a relative paleointensity record for the interval spanning the M/B boundary down into the Jaramillo Subchron, which is unique in the Mediterranean because existing records from this basin cover only the last 80 kyr. The average SAR in core LC07 is used to translate the depth-related paleointensity record to the time domain; the ratio of anhysteretic remanent magnetization to low-field magnetic susceptibility is climatically sensitive and is used to tune the age model. This correlation produces a good fit to the global ice volume model derived for summer insolation at 65°N. With this age model, a paleointensity minimum in association with the M/B boundary has a duration of about 4-5 kyr, while the directional change has a duration of <3 kyr. A second paleointensity minimum of similar duration is found about 16 kyr below the M/B boundary. This feature (precursor or 'dip' in the literature) has previously been recognized at the same time interval in many marine records, which reinforces the validity of our age model. Other relative paleointensity minima are found within chron C1r.1r, and, within the uncertainties of the respective age models, these minima coincide with those observed from the few published coeval paleointensity records. In particular, there is good correspondence between the ages of minima at about 0.92 and 0.89 Ma, which probably correlate with two geomagnetic excursions (Santa Rosa and Kamikatsura, respectively) that have been recorded in lava flows and dated using the 40Ar/39Ar technique. In contrast, a recently dated excursion at 0.83 Ma from La Palma seems to correspond to a paleointensity maximum. This observation is opposite to that expected and this excursion needs to be confirmed. In contrast to some recently published paleointensity records, spectral analysis of the LC07 record does not reveal identification of significant power at the orbital obliquity frequency.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofEarth and Planetary Science Lettersen
dc.relation.ispartofseries3-4 / 194 (2002)en
dc.subjectpaleointensityen
dc.subjectmagnetic fielden
dc.subjectMatuyama Chronen
dc.subjectJaramillo Subchronen
dc.subjectBrunhes Chronen
dc.subjectMediterranean Seaen
dc.titleRelative geomagnetic paleointensity from the Jaramillo Subchron to the Matuyama/Brunhes boundary as recorded in a Mediterranean piston coreen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber327-341en
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.02. Geomagnetic field variations and reversalsen
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetismen
dc.relation.references[1] L. Tauxe, Sedimentary records of relative paleointensity of the geomagnetic ¢eld; theory and practice, Rev. Geophys. 31 (1993) 319-354. [2] J.E.T. Channell, D.A. Hodell, J. McManus, B. Lehman, Orbital modulation of the Earth's magnetic ¢eld intensity, Nature 394 (1998) 464-468. [3] Y. Guyodo, P. Gaillot, J.E.T. Channell, Wavelet analysis of relative geomagnetic paleointensity at ODP Site 983, Earth Planet. Sci. Lett. 184 (2000) 109-123. [4] Y. Guyodo, J.-P. Valet, Relative variations in geomagnetic intensity from sedimentary records; the past 200,000 years, Earth Planet. Sci. Lett. 143 (1996) 23-36. [5] Y. Guyodo, J.-P. Valet, Global changes in intensity of the Earth's magnetic ¢eld during the past 800 kyr, Nature 399 (1999) 249-252. [6] J.-P. Valet, L. Meynadier, Geomagnetic ¢eld intensity and reversals during the past four million years, Nature 366 (1993) 234-238. [7] Y.S. Kok, L. Tauxe, Saw-toothed pattern of sedimentary paleointensity records explained by cumulative viscous remanence, Earth Planet. Sci. Lett. 144 (1996) E9-E14. [8] Y.S. Kok, L. Tauxe, A relative geomagnetic paleointensity stack from Ontong-Java Plateau sediments for the Matuyama, J. Geophys. Res. 104 (1999) 25,401-25,413. [9] A.P. Roberts, J.S. Stoner, C. Richter, Coring-induced magnetic overprints and limitations of the long-core paleomagnetic measurement technique: some observations from Leg 160, eastern Mediterranean Sea, in: K.-C. Emeis, A.H.F. Robertson, C. Richter (Eds.), Proc. ODP, Init. Reports 160. Ocean Drilling Program, College Station, TX, 1996, pp. 497-505. [10] B. Herr, M. Fuller, M. Haag, F. Heider, In£uence of drilling on two records of the Matuyama/Brunhes polarity transition in marine sediment cores near Gran Canaria, in: P.P.E. Weaver, H.U. Schmincke, J.V. Firth (Eds.), Proc. ODP, Sci. Results 157. Ocean Drilling Program, College Station, TX, 1998, pp. 57-69. [11] H. Vali, J.L. Kirschvink, Magnetofossil dissolution in a paleomagnetically unstable deep-sea sediment, Nature 339 (1989) 203-206. [12] J.A. Tarduno, Temporal trends of magnetic dissolution in the pelagic realm gauging paleoproductivity?, Earth Planet. Sci. Lett. 123 (1994) 39-48. [13] M. Torii, Low-temperature oxidation and subsequent downcore dissolution of magnetite in deep-sea sediments, ODP Leg 161 (Western Mediterranean), J. Geomagn. Geoelectr. 49 (1997) 1233-1245. [14] J.E.T. Channell, T. Hawthorne, Progressive dissolution of titanomagnetites at ODP Site 653 (Tyrrhenian Sea), Earth Planet. Sci. Lett. 96 (1990) 469-480. [15] A.P. Roberts, J.S. Stoner, C. Richter, Diagenetic magnetic enhancement of sapropels from the eastern Mediterranean Sea, Mar. Geol. 153 (1999) 103-116. [16] L. Tauxe, J.L. LaBrecque, R. Dodson, M. Fuller, U-channels - a new technique for paleomagnetic analysis of hydraulic piston cores, EOS Trans. AGU 64 (1983) 219. [17] R. Weeks, C. Laj, L. Endignoux, M. Fuller, A. Roberts, R. Manganne, E. Blanchard, W. Goree, Improvements in long-core measurement techniques ; applications in palaeomagnetism and palaeoceanography, Geophys. J. Int. 114 (1993) 651-662. [18] J.L. Kirschvink, The least-squares line and plane and the analysis of palaeomagnetic data, Geophys. J. R. Astron. Soc. 62 (1980) 699-718. [19] L. Tauxe, T. Herbert, N.J. Shackleton, Y.S. Kok, Astronomical calibration of the Matuyama-Brunhes boundary: Consequences for magnetic remanence acquisition in marine carbonates and the Asian loess sequences, Earth Planet. Sci. Lett. 140 (1996) 133-146. [20] N. Shackleton, A. Berger, W.R. Peltier, An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677, Trans. R. Soc. Edinburgh Earth Sci. 81 (1990) 251-261. [21] D.V. Kent, D.A. Schneider, Correlation of paleointensity variation records in the Brunhes/Matuyama polarity transition interval, Earth Planet. Sci. Lett. 129 (1995) 135-144. [22] P. Hartl, L. Tauxe, A precursor to the Matuyama/ Brunhes transition-¢eld instability as recorded in pelagic sediments, Earth Planet. Sci. Lett. 138 (1996) 121-135. [23] J.W. King, S.K. Banerjee, J.A. Marvin, Ö . Özdemir, A comparison of di¡erent magnetic methods for determining the relative grain size of magnetite in natural materials some results from lake sediments, Earth Planet. Sci. Lett. 59 (1982) 404-419. [24] S.G. Robinson, The late Pleistocene paleoclimatic record of North Atlantic deep-sea sediments revealed by mineralmagnetic measurements, Phys. Earth. Planet. Inter. 42 (1986) 22-47. [25] Y. Guyodo, C. Richter, J.-P. Valet, Paleointensity record from Pleistocene sediments (1.4-0 Ma) off the California Margin, J. Geophys. Res. 104 (1999) 22,953-22,964. [26] D. Paillard, L. Labeyrie, P. Yiou, Macintosh program performs time-series analysis, EOS Trans. AGU 77 (1996) 339. [27] J.E.T. Channell, H.F. Kleiven, Geomagnetic palaeointensities and astrochronological ages for the Matuyama- Brunhes boundary and the boundaries of the Jaramillo subchron; palaeomagnetic and oxygen isotope records from ODP Site 983, Phil. Trans. R. Soc. London 358 (2000) 1027-1047. [28] R. Tiedemann, M. Sarnthein, N.J. Shackleton, Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records of Ocean Drilling Program Site 659, Paleoceanography 9 (1994) 619-638. [29] J. Imbrie, J.Z. Imbrie, Modeling the climatic response to orbital variations, Science 207 (1980) 943-953. [30] J.-P. Valet, L. Meynadier, A comparison of di¡erent techniques for relative paleointensity, Geophys. Res. Lett. 25 (1998) 89-92. [31] S. Levi, S.K. Banerjee, On the possibility of obtaining relative paleointensities from lake sediments, Earth Planet. Sci. Lett. 29 (1976) 219-226. [32] C. Constable, L. Tauxe, R.L. Parker, Analysis of 11 Myr of geomagnetic intensity variation, J. Geophys. Res. 103 (1998) 17735-17748. [33] B.S. Singer, K.A. Ho¡man, A. Chauvin, R.S. Coe, M.S. Pringle, Dating transitionally magnetized lavas of the late Matuyama Chron; toward a new 40Ar/39Ar timescale of reversals and events, J. Geophys. Res. 104 (1999) 679-693. [34] X. Quidelleur, P. Gillot, Evidence for a new geomagnetic excursion recorded prior to the M.B transition at La Palma, EOS Trans. AGU 81 (48, Fall Meet. Suppl.), Abstract V72E-09, 2000. [35] B.J. Pillans, A.P. Roberts, G.S. Wilson, S.T. Abbott, B.V. Alloway, Magnetostratigraphic, lithostratigraphic and tephrostratigraphic constraints on lower and middle Pleistocene sea-level changes, Wanganui Basin, New Zealand, Earth Planet. Sci. Lett. 121 (1994) 81-98. [36] R.-X. Zhu, C. Laj, A. Mazaud, The Matuyama-Brunhes and Upper Jaramillo transitions recorded in a loess section at Weinan, north-central China, Earth Planet. Sci. Lett. 125 (1994) 143-158. [37] G. McIntosh, T.C. Rolph, J. Shaw, P. Dagley, A detailed record of normal-reversed-polarity transition obtained from a thick loess sequence at Jiuzhoutai, near Lanzhou, China, Geophys. J. Int. 127 (1996) 651-664. [38] C. Richter, A.P. Roberts, J.S. Stoner, L.D. Benning, C.T. Chi, Magnetostratigraphy of Pliocene-Pleistocene sediments from the eastern Mediterranean Sea, in: A.H.F. Robertson, K.C. Emeis, C. Richter (Eds.), Proc. ODP, Sci. Results 160. Ocean Drilling Program, College Station, TX, 1998, pp. 61-73. [39] D.K. Biswas, M. Hyodo, Y. Taniguchi, M. Kaneko, S. Katoh, H. Sato, Y. Kinugasa, K. Mizuno, Magnetostratigraphy of Plio-Pleistocene sediments in a 1700-m core from Osaka Bay, southwestern Japan and short geomagnetic events in the middle Matuyama and early Brunhes chrons, Palaeogeogr. Palaeoclimatol. Palaeoecol. 148 (1999) 233-248. [40] J.J. Love, A. Mazaud, A database for the Matuyama- Brunhes magnetic reversal, Phys. Earth Planet. Inter. 103 (1997) 207-245. [41] D. Gubbins, The distinction between geomagnetic excursions and reversals, Geophys. J. Int. 137 (1999) F1-F3. [42] E. Tric, J.P. Valet, P. Tucholka, M. Paterne, L.D. Labeyrie, F. Guichard, L. Tauxe, M. Fontugne, Paleointensity of the geomagnetic ¢eld during the last 80,000 years, J. Geophys. Res. 97 (1992) 9337-9351. [43] J. Laskar, The chaotic motion of the solar system a numerical estimate of the size of the chaotic zones, Icarus 88 (1990) 266-291. [44] L. Meynadier, J.-P. Valet, F.C. Bassinot, N.J. Shackleton, Y. Guyodo, Asymmetrical saw-tooth pattern of the geomagnetic field intensity from equatorial sediments in the Pacific and Indian oceans, Earth Planet. Sci. Lett. 126 (1994) 109-127.en
dc.description.obiettivoSpecifico2.2. Laboratorio di paleomagnetismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorDinarès-Turell, J.en
dc.contributor.authorSagnotti, L.en
dc.contributor.authorRoberts, A. P.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentSchool of Ocean and Earth Science, University of Southampton, Southampton Oceanography Centre, European Way, Southampton SO14 3ZH, UKen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptNational Oceanography Centre, University of Southampton, European Way, Southampton SO14 3ZH, UK-
crisitem.author.orcid0000-0002-5546-2291-
crisitem.author.orcid0000-0003-3944-201X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
EPSL582.pdf1.2 MBAdobe PDF
Show simple item record

Page view(s)

146
checked on Mar 27, 2024

Download(s)

22
checked on Mar 27, 2024

Google ScholarTM

Check