Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3992
DC FieldValueLanguage
dc.contributor.authorallSagnotti, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallRoberts, A. P.; School of Ocean and Earth Science, University of Southampton, Southampton Oceanography Centre, European Way, Southampton SO14 3ZH, UKen
dc.contributor.authorallWeaver, R.; School of Ocean and Earth Science, University of Southampton, Southampton Oceanography Centre, European Way, Southampton SO14 3ZH, UKen
dc.contributor.authorallVerosub, K. L.; Department of Geology, University of California, Davis, CA 95616, USAen
dc.contributor.authorallFlorindo, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallPike, C. R.; 3Department of Geology, University of California, Davis, CA 95616, USAen
dc.contributor.authorallClayton, T.; School of Ocean and Earth Science, University of Southampton, Southampton Oceanography Centre, European Way, Southampton SO14 3ZH, UKen
dc.contributor.authorallWilson, G. S.; Department of Geology, University of Otago, Dunedin, New Zealanden
dc.date.accessioned2008-07-23T13:13:24Zen
dc.date.available2008-07-23T13:13:24Zen
dc.date.issued2005-01en
dc.identifier.urihttp://hdl.handle.net/2122/3992en
dc.description.abstractA mixed-polarity zone, representing alternations between remagnetized and non-remagnetized strata, has been documented within the lower few metres of the CRP-1 core (Ross Sea, Antarctica). Detailed rock magnetic investigation of this interval indicates that the normal polarity remagnetization is carried by magnetostatically interacting single-domain particles of a ferrimagnetic iron sulphide mineral, while the reversed-polarity magnetization of non-remagnetized strata is carried by magnetite with a broad range of grain sizes and negligible magnetostatic interactions. Scanning electron microscope observations of polished sections indicate that the ferrimagnetic iron sulphide mineral is greigite (Fe3S4). Based on microtextural relationships, it is not possible to determine the relative timing of formation for much of the greigite. However, a significant proportion of the greigite has grown on the surface of authigenic siderite (FeCO3) grains that occur as microconcretions and as cement surrounding detrital matrix grains. In such cases, microtextural relationships indicate that siderite post-dates early diagenetic pyrite and that greigite post-dates the siderite. Siderite usually forms in environments with abundant dissolved iron and carbonate, but without dissolved pore water H2S. This set of geochemical conditions occurs in methanic settings below the sulphate reduction zone (in which early diagenetic pyrite forms).We interpret the observed remagnetization of the lower part of the CRP-1 core as due to a late diagenetic pore water migration event where abundant iron on the surface of siderite grains reacted with fluids containing limited dissolved sulphide, thereby causing precipitation of greigite. The distribution of siderite (and associated greigite) in the lower part of the CRP-1 core is patchy, which accounts for the apparent alternation of polarities. This study is part of a growing catalogue of remagnetizations involving greigite, which suggests that occurrences of greigite should be treated with caution in palaeomagnetic and environmental magnetic studies.en
dc.language.isoEnglishen
dc.publisher.nameBlackwell Publishingen
dc.relation.ispartofGeophysical Journal Internationalen
dc.relation.ispartofseries1 / 160 (2005)en
dc.subjectAntarcticaen
dc.subjectdiagenesisen
dc.subjectgreigiteen
dc.subjectiron carbonateen
dc.subjectiron sulphideen
dc.subjectremagnetizationen
dc.subjectsideriteen
dc.titleApparent magnetic polarity reversals due to remagnetization resulting from late diagenetic growth of greigite from sideriteen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber89-100en
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetismen
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetismen
dc.identifier.doi10.1111/j.1365-246X.2005.02485.xen
dc.relation.referencesAubourg, C. & Robion, P., 2002. Composite ferromagnetic fabrics (magnetite, greigite) measured by AMS and partial AARM in weakly strained sandstones from western Makran, Iran, Geophys. J. Int., 151, 729–737. Baker, J.C.&Fielding, C.R., 1998. Diagenesis of glacimarine Miocene strata in CRP-1, Antarctica, Terra Antartica, 5, 647–653. Berggren, W.A., Kent, D.V., Swisher, C.C., III & Aubry, M.P., 1995. A revised Cenozoic geochronology and biostratigraphy, in Geochronology, Time Scales, and Stratigraphic Correlation,SEPMSpecial Publication 54, pp. 129–212, eds Berggren, W.A., Kent, D.V., Aubry, M.P. & Hardenbol, J., Society of Economic Paleontologists and Mineralogists, Tulsa, OK. Berner, R.A., 1981. A new geochemical classification of sedimentary environments, J. Sediment. Petrol., 51, 359–365. Cande, S.C. & Kent, D.V., 1995. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic, J. geophys. Res., 100, 6093–6095. Cape Roberts Project Science Team, 1998. Initial report on CRP-1, Cape Roberts Project, Antarctica, Terra Antartica, 5, 1–187. Claps, M. & Aghib, F.S., 1998. Carbonate diagenesis in Miocene sediments from CRP-1, Victoria Land Basin, Antarctica, Terra Antartica, 5, 655– 660. Dekkers, M.J., 1988. Magnetic properties of natural pyrrhotite part I: behaviour of initial susceptibility and saturation-magnetisation-related rockmagnetic parameters in a grain-size dependent framework, Phys. Earth planet. Inter., 52, 376–394. Dekkers, M.J.&Schoonen, M.A.A., 1996. Magnetic properties of hydrothermally synthesized greigite (Fe3S4)—I. Rock magnetic parameters at room temperature, Geophys. J. Int., 126, 360–368. De Santis, L. & Barrett, P.J., 1998. Grain size analysis of samples from CRP-1, Terra Antartica, 5, 375–382. Dinar`es-Turell, J.&Dekkers, M.J., 1999. Diagenesis and remanence acquisition in the Lower PlioceneTrubi marls at Punta di Maiata (southern Sicily): palaeomagnetic and rock magnetic observations, in Palaeomagnetism and Diagenesis in Sediments, Geological Society of London Special Publication 151, pp. 53–69, eds Tarling, D.H. & Turner, P., Geological Society of London, London. Ellwood, B.B., Balsam, W., Burkart, B., Long, G.J. & Buhl, M.L., 1986. Anomalous magnetic properties in rocks containing the mineral siderite: paleomagnetic implications, J. geophys. Res., 91, 12 779–12 790. Erd, R.C., Evans, H.T. Jr,&Richter,D.H., 1957.Smythite, a newiron sulfide, and associated pyrrhotite from Indiana, Am. Mineral., 42, 309–333. Florindo, F. & Sagnotti, L., 1995. Palaeomagnetism and rock magnetism in the upper Pliocene Valle Ricca (Rome, Italy) section, Geophys. J. Int., 123, 340–354. Frederichs, T., von Dobeneck, T., Bleil, U. & Dekkers, M.J., 2003. Towards the identification of siderite, rhodochrosite, and vivianite in sediments by their low-temperature magnetic properties, Phys. Chem. Earth, 28, 669– 679. Furukawa, Y. & Barnes, H.L., 1996. Reactions forming smythite, Fe9S11, Geochim. Cosmochim. Acta, 60, 3581–3591. Harwood,D.M., Bohaty, S.M.&Scherer, R.P., 1998. LowerMiocene diatom biostratigraphy of the CRP-1 drillcore, McMurdo Sound, Antarctica, Terra Antarctica, 5, 499–514. Hoffmann, V., Stanjek, H. & Murad, E., 1993. Mineralogical, magnetic and M¨ossbauer data of smythite (Fe9S11), Stud. Geophys. Geodaet., 37, 366– 381. Horng, C.-S.,Torii, M., Shea, K.-S.&Kao, S.-J., 1998. Inconsistent magnetic polarities between greigite- and pyrrhotite/magnetite-bearing marine sediments from the Tsailiao-chi section, southwestern Taiwan, Earth planet. Sci. Lett., 164, 467–481. Housen, B.A., Banerjee, S.K. & Moskowitz, B.M., 1996. Low-temperature magnetic properties of siderite and magnetite in marine sediments, Geophys. Res. Lett., 23, 2843–2846. Howe, J.A., Woolfe, K.J. & Fielding, C.R., 1998. Lower Miocene glacimarine gravity flows, Cape Roberts Drillhole-1, Ross Sea, Antarctica, Terra Antartica, 5, 393–399. Hu, S., Appel, E., Hoffmann, V., Schmahl, W.W. & Wang, S., 1998. Gyromagnetic remanence acquired by greigite (Fe3S4) during static three-axis alternating field demagnetization, Geophys. J. Int., 134, 831–842. Ihml´e, P.F., Hirt, A.M. & Lowrie, W., 1989. Inverse magnetic fabric in deformed limestones of the Morcles nappe, Switzerland, Geophys. Res. Lett., 16, 1383–1386. Jacobs, I.S., 1963. Metamagnetism of siderite (FeCO3), J. Appl. Phys., 34, 1106–1107. Jiang,W.T., Horng, C.S., Roberts, A.P. & Peacor, D.R., 2001. Contradictory magnetic polarities in sediments and variable timing of neoformation of authigenic greigite, Earth planet. Sci. Lett., 193, 1–12. Krs, M., Nov´ak, F., Krsov´a, M., Pruner, P., Koukl´ıkov´a, L. & Jansa, J., 1992. Magnetic properties and metastability of greigite-smythite mineralization in brown-coal basins of the Krusn´e Hory Piedmont, Bohemia, Phys. Earth planet. Inter., 70, 273–287. Krupp, R.E., 1994. Phase relations and phase transformations between the low-temperature iron sulphides mackinawite, greigite, and smythite, Eur. J. Mineral., 6, 265–278. Lavelle, M., 1998. Strontium-isotope stratigraphy of the CRP-1 drillhole, Ross Sea, Antarctica, Terra Antartica, 5, 691–696. Lowrie, W., 1990. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties, Geophys. Res. Lett., 17, 159–162. McIntosh, W.C., 1998. 40Ar/39Ar geochronology of volcanic clasts and pumice in CRP-1 core, Cape Roberts, Antarctica, Terra Antartica, 5, 683– 690. Nov´ak, F. & Jansa, J., 1992. Authigenic smythite and pyrrhotite in the upper part of the Sokolov Formation (the Sokolov Basin, Czechoslovakia), Bull. Geol. Surv. Prague, 67, 235–244. Oda, H. & Torii, M., 2004. Sea-level change and remagnetization of continental shelf sediments off New Jersey (ODP Leg 174A): magnetite and greigite diagenesis, Geophys. J. Int., 156, 443–458. Pan, Y., Zhu, R. & Banerjee, S.K., 2000. Rock magnetic properties related to thermal treatment of siderite: behavior and interpretation, J. geophys. Res., 105, 783–794. Pike, C.R., Roberts, A.P.&Verosub, K.L., 1999. Characterizing interactions in fine magnetic particle systems using first order reversal curves, J. Appl. Phys., 85, 6660–6667. Postma, D., 1977. The occurrence and chemical composition of recent Ferich mixed carbonates in a river bog, J. Sediment. Petrol., 47, 1089–1098. Potter, D.K. & Stephenson, A., 1988. Single-domain particles in rocks and magnetic fabric analysis, Geophys. Res. Lett., 15, 1097–1100. Pye, K., 1981. Marshrock formed by iron sulphide and siderite cementation in saltmarsh sediments, Nature, 294, 650–652. Pye, K., Dickson, J.A.D., Schiavon, N., Coleman, M.L. & Cox, M., 1990. Formation of siderite-Mg-calcite-iron sulphide concretions in intertidal marsh and sandflat sediments, north Norfolk, England, Sedimentology, 37, 325–343. Raiswell, R., 1997. A geochemical framework for the application of stable sulphur isotopes to fossil pyritization, J. geol. Soc. Lond., 154, 343–356. Raiswell, R. & Fisher, Q.J., 2000. Mudrock-hosted carbonate concretions: a reviewof growth mechanisms and their influence on chemical and isotopic composition, J. geol. Soc. Lond., 157, 239–251. Richter, C., Roberts, A.P., Stoner, J.S., Benning, L.D. & Chi, C.T., 1998. Magnetostratigraphy of Pliocene–Pleistocene sediments from the eastern Mediterranean Sea, Proc. ODP, Sci. Res., 160, 61–74. Rickard, D.T., 1968. Synthesis of smythite-rhombohedral Fe3S4, Nature, 218, 356–357. Roberts, A.P., 1995. Magnetic properties of sedimentary greigite (Fe3S4), Earth planet. Sci. Lett., 134, 227–236. Roberts, A.P., Wilson, G.S., Florindo, F., Sagnotti, L., Verosub, K.L. & Harwood, D.M., 1998. Magnetostratigraphy of lower Miocene strata from the CRP-1 core, McMurdo Sound, Ross Sea, Antarctica, Terra Antartica, 5, 703–713. Roberts, A.P., Pike, C.R.&Verosub, K.L., 2000. FORC diagrams: a newtool for characterizing the magnetic properties of natural samples, J. geophys. Res., 105, 28 461–28 475. Rochette, P., 1988. Inverse magnetic fabric in carbonate-bearing rocks, Earth planet. Sci. Lett., 90, 229–237. Rochette, P., Jackson, M. & Aubourg, C., 1992. Rock magnetism and the interpretation of anisotropy of magnetic susceptibility, Rev. Geophys., 30, 209–226. Sagnotti, L. & Winkler, A., 1999. Rock magnetism and palaeomagnetism of greigite-bearing mudstones in the Italian peninsula, Earth planet. Sci. Lett., 165, 67–80. Sagnotti, L., Florindo, F.,Wilson, G.S., Roberts, A.P.&Verosub, K.L., 1998. Environmental magnetism of lower Miocene strata from the CRP-1 core, McMurdo Sound, Antarctica, Terra Antartica, 5, 661–667. Snowball, I.F., 1997a. Gyroremanent magnetization (GRM) and the magnetic properties of greigite bearing clays in southern Sweden, Geophys. J. Int., 129, 624–636. Snowball, I.F., 1997b. The detection of single-domain greigite (Fe3S4) using rotational remanent magnetization (RRM) and the effective gyro field (Bg): mineral magnetic and palaeomagnetic applications, Geophys. J. Int., 130, 704–716. Stephenson, A., 1980a. Gyromagnetism and the remanence acquired by a rotating rock in an alternating field, Nature, 284, 48–49. Stephenson, A., 1980b. A gyroremanent magnetization in anisotropic magnetic material, Nature, 284, 49–51. Stephenson, A., 1993. Three-axis static alternating-field demagnetization of rocks and the identification of NRM, GRM, and anisotropy, J. geophys. Res., 98, 373–381. Taylor, L.A.&Williams, K.L., 1972. Smythite (Fe, Ni)9S11—a redefinition, Am. Mineral., 57, 1571–1577. Thompson, R. & Cameron, T.J.D., 1995. Palaeomagnetic study of Cenozoic sediments in North Sea boreholes: an example of a magnetostratigraphic conundrum in a hydrocarbon-producing area, in Palaeomagnetic Applications in Hydrocarbon Exploration, Geological Society of London Special Publication 98, pp. 223–236, eds Turner, P. & Turner, A., Geological Society of London, London. Thomson, G.F., 1990. The anomalous demagnetisation of pyrrhotite, Geophys. J. Int., 103, 425–430. Weaver, R., Roberts, A.P. & Barker, A.J., 2002. A late diagenetic (synfolding) magnetization carried by pyrrhotite: implications for palaeomagnetic studies from magnetic iron sulphide-bearing sediments, Earth planet. Sci. Lett., 200, 371–386. Winkler, A., Florindo, F., Sagnotti, L. & Sarti, G., 1996. Inverse to normal magnetic fabric transition in an upper Miocene marly sequence from Tuscany, Italy, Geophys. Res. Lett., 23, 909–912. Xu, W., van der Voo, R. & Peacor, D., 1998. Electron microscope and rock magnetic study of remagnetized Leadville carbonates, central Colorado, Tectonophysics, 296, 333–362.en
dc.description.obiettivoSpecifico2.2. Laboratorio di paleomagnetismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorSagnotti, L.en
dc.contributor.authorRoberts, A. P.en
dc.contributor.authorWeaver, R.en
dc.contributor.authorVerosub, K. L.en
dc.contributor.authorFlorindo, F.en
dc.contributor.authorPike, C. R.en
dc.contributor.authorClayton, T.en
dc.contributor.authorWilson, G. S.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentSchool of Ocean and Earth Science, University of Southampton, Southampton Oceanography Centre, European Way, Southampton SO14 3ZH, UKen
dc.contributor.departmentSchool of Ocean and Earth Science, University of Southampton, Southampton Oceanography Centre, European Way, Southampton SO14 3ZH, UKen
dc.contributor.departmentDepartment of Geology, University of California, Davis, CA 95616, USAen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.department3Department of Geology, University of California, Davis, CA 95616, USAen
dc.contributor.departmentSchool of Ocean and Earth Science, University of Southampton, Southampton Oceanography Centre, European Way, Southampton SO14 3ZH, UKen
dc.contributor.departmentDepartment of Geology, University of Otago, Dunedin, New Zealanden
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione AC, Roma, Italia-
crisitem.author.orcid0000-0003-3944-201X-
crisitem.author.orcid0000-0002-6058-9748-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
08062214581927323.pdf491.91 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

71
checked on Feb 10, 2021

Page view(s) 50

174
checked on Apr 17, 2024

Download(s)

31
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric