Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3941
DC FieldValueLanguage
dc.contributor.authorallSperanza, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallSagnotti, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallRochette, P.; CEREGE, CNRS University of Aix-Marseille 3, Aix en Provence, Franceen
dc.date.accessioned2008-07-08T10:13:56Zen
dc.date.available2008-07-08T10:13:56Zen
dc.date.issued2004-04en
dc.identifier.urihttp://hdl.handle.net/2122/3941en
dc.description.abstractIn this paper, we review the recent hypothesis, based mostly on geomorphological features, that a ~130 m-wide sag pond, surrounded by a saddle-shaped rim from the Sirente plain (Abruzzi, Italy), is the first-discovered meteoritic crater of Italy. Sub-circular depressions (hosting ponds), with geomorphological features and size very similar to those exhibited by the main Sirente sag, are exposed in other neighboring intermountain karstic plains from Abruzzi. We have sampled present-day soils from these sag ponds and from the Sirente sags (both the main “crater” and some smaller ones, recently interpreted as a crater field) and various Abruzzi paleosols from excavated trenches with an age range encompassing the estimated age of the “Sirente crater.” For all samples, we measured the magnetic susceptibility and determined the Ni and Cr contents of selected specimens. The results show that the magnetic susceptibility values and the geochemical composition are similar for all samples (from Sirente and other Abruzzi sags) and are both significantly different from the values reported for soils contaminated by meteoritic dust. No solid evidence pointing at an impact origin exists, besides the circular shape and rim of the main sag. The available observations and data suggest that the “Sirente crater,” together with analogous large sags in the Abruzzi intermountain plains, have to be attributed to the historical phenomenon of “transumanza” (seasonal migration of sheep and shepherds), a custom that for centuries characterized the basic social-economical system of the Abruzzi region. Such sags were excavated to provide water for millions of sheep, which spent summers in the Abruzzi karstic high pasture lands, on carbonatic massifs deprived of natural superficial fresh water. Conversely, the distribution of the smaller sags from the Sirente plain correlates with the local pattern of the calcareous bedrock and, together with the characteristics of their internal structure, are best interpreted as natural dolines. In fact, reported radiocarbon ages for the formation of the main sag pond and of the smaller sags differ (significantly) by more than two millennia, thus excluding that they were all contemporaneously formed by a meteoritic impact.en
dc.language.isoEnglishen
dc.publisher.nameMeteoritical Societyen
dc.relation.ispartofMeteoritics & Planetary Scienceen
dc.relation.ispartofseries4 / 39 (2004)en
dc.subjectAbruzzien
dc.subjectSirenteen
dc.subjectmeteoritic cratersen
dc.subjectmagnetic susceptibilityen
dc.titleAn anthropogenic origin of the “Sirente crater,” Abruzzi, Italyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber635-649en
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetismen
dc.relation.referencesAccordi G. and Carbone F., editors. 1988. Progetto finalizzato geodinamica, carta delle litofacies del Lazio-Abruzzo ed aree limitrofe e Note illustrative. Roma: Consiglio Nazionale delle Ricerche. 223 p. Arpea M. 1999. Roccadimezzo e l’altipiano. L’Aquila: Japadre Editore. 270 p. Bland P. A., Sexton A. S., Jull A. J. T., Bevan A. W. R., Berry F. J., Thornley D. M., Astin T. R., Britt D. T., and Pillinger C. T. 1998. Climate and rock weathering: A study of terrestrial age dated ordinary chondritic meteorites from hot desert regions. Geochimica et Cosmochimica Acta 18:3169–3184. Cassidy W. A. 1971. A small meteorite crater: Structural details. Journal of Geophysical Research 76:3896–3912. D’Addezio G., Masana E., and Pantosti D. 2001. The holocene paleoseismicity of the Aremogna-Cinque Miglia fault (central Italy). Journal of Seismology 5:181–205. Evans M. E. and Heller F. 1994. Magnetic enhancement and palaeoclimate: Study of a loess/palaeosol couplet across the loess plateau of China. Geophysical Journal International 117:257–264. Evans M. E. and Heller F. 2003. Environmental magnetism. Principles and applications of enviromagnetics. San Diego: Academic Press. 299 p. Florindo F., Zhu R., Guo B., Yue L., Pan Y., and Speranza F. 1999. Magnetic proxy climate results from the Duanjiapo loess section, southernmost extremity of the Chinese loess plateau. Journal of Geophysical Research 104:645–659. Hodge P. W. and Wright F. W. 1970. Meteoritic spherules in the soil surrounding terrestrial impact craters. Nature 225:717–718. Hodge P. W. and Wright F. W. 1971. Meteoritic spherules in the soil surrounding the Henbury meteorite craters. Journal of Geophysical Research 76:3881–3895. Hou Q. L., Ma P. X., and Kolesnikov E. M. 1998. Discovery of iridium and other element anomalies near the 1908 Tunguska explosion site. Planetary and Space Science 46:179–188. Ivone D. 2002. La transumanza. Pastori greggi tratturi. Torino: Giappichelli Editore. 198 p. Jarosewich E. 1990. Chemical analysis of meteorites: Compilation of stony and iron meteorite analyses. Meteoritics 25:323–337. Luterbacker J., Dietrich D., Xoplaki E., Grosjean M., and Wanner H. 2004. European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303:1499–1503. Maher B. A. 1986. Characterization of soils by mineral magnetic measurements. Physics of the Earth and Planetary Interiors 42: 76–92. Maher B. A. 1998. Magnetic properties of modern soils and loessic paleosols: Implication for paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 137:25–54. Maher B. A. and Taylor R. M. 1988. Formation of ultrafine-grained magnetite in soils. Nature 336:368–371. Maher B. A. and Thompson R. 1999. Quaternary climates, environments, and magnetism. Cambridge: Cambridge University Press. 390 p. Ormö J., Rossi A. P., and Komatsu G. 2002a. The Sirente crater field, Italy. Meteoritics & Planetary Science 37:1507–1521. Ormö J., Rossi A. P., Komatsu G., Marchetti M., and De Santis A. 2002b. The discovery of a probable well-preserved impact crater field in central Italy (abstract #1075). 33rd Lunar and Planetary Science Conference. CD-ROM. Ormö J., Rossi A. P., and Komatsu G. 2003. The Sirente crater field: Outline, age, and evidence for heating of the target (abstract). 3rd International Conference on Large Meteorite Impacts. Pantosti D., D’Addezio G., and Cinti F. R. 1996. Paleoseismicity of the Ovindoli-Pezza fault, central Apennines, Italy: A history including a large, previously unrecorded earthquake in the Middle Ages (860–1300 AD). Journal of Geophysical Research 101:5937–5959. Regione Abruzzo 2000. Abruzzo: Le vie della transumanza. Pescara: Carsa Edizioni. 143 p. Serri G., Innocenti F., and Manetti P. 1993. Geochemical and petrological evidence of the subduction of delaminated Adriatic continental lithosphere in the genesis of the Neogene-Quaternary magmatism of central Italy. Tectonophysics 223:117–147. Taylor S. R., McLennan S. M., and McCulloch M. T. 1983. Geochemistry of loess, continental crustal composition, and crustal model ages. Geochimica et Cosmochimica Acta 47:1897– 1905. Veski S., Heinsalu A., Kirsimäe K., Poska A., and Saarse L. 2001. Ecological catastrophe in connection with the impact of the Kaali meteorite about 800–400 BC on the island of Saaremaa, Estonia. Meteoritics & Planetary Science 36:1367–1375.en
dc.description.obiettivoSpecifico2.2. Laboratorio di paleomagnetismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorSperanza, F.en
dc.contributor.authorSagnotti, L.en
dc.contributor.authorRochette, P.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentCEREGE, CNRS University of Aix-Marseille 3, Aix en Provence, Franceen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptUniversité d’Aix Marseille 3, UMR CNRS 6635, CEREGE Europole de l’Arbois BP80 13545 Aix en Provence Cedex 4, France-
crisitem.author.orcid0000-0001-5492-8670-
crisitem.author.orcid0000-0003-3944-201X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Speranza et al 04 MAPS 39 635-649.pdf1.06 MBAdobe PDF
Show simple item record

Page view(s) 20

311
checked on Apr 17, 2024

Download(s) 50

133
checked on Apr 17, 2024

Google ScholarTM

Check