Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3928
DC FieldValueLanguage
dc.contributor.authorallScalera, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2008-07-07T08:22:36Zen
dc.date.available2008-07-07T08:22:36Zen
dc.date.issued2008-06-30en
dc.identifier.urihttp://hdl.handle.net/2122/3928en
dc.descriptionIn the conclusions the paper contains an hypothesis about a possible relation among the Earth's oceans half spreading rate, the global expansion of the planet and the uplift of the thrust-fold belts.en
dc.description.abstractThe deep seismicity in the Mediterranean region does not have the pattern that the alleged convergence of Africa and Eurasia should produce. Often, where subduction slabs and Wadati-Benioff zones should be present – showing intermediate and deep hypocenters – only shallow intracrustal seismicity is detected. Most geoscientists admit, without a valid explanation, that in this region subduction occurs largely aseismically. Inspection of South Tyrrhenian, Aegean and South Carpathian deep foci zones makes clear that these isolated narrow plumes (or clusters, filaments) of hypocentres cannot be sites of active subduction but that they are related to uplift of deep mantle material. Their presence under actively rising part of orogens – besides many additional clues coming from a number of different fields –leads to a unified interpretation of the involved phenomena, and to a new interpretation of the orogenic processes and fold belt building. The evidence points to vertical displacements of materials as the main process responsible for deep earthquakes, volcanic phenomena and orogenesis. Several tens of km of overthrusts and underthrusts should not be mistaken for large-scale subduction, and the limit of 50-70 km (the roots of an orogen) should be considered the maximum depth of occurrence of metamorphism. Into these limits of depth, the nonlithostatic overpressures due to the surfaceward mantle flow, the association of fluids, extreme magnitude earthquakes and deviatoric stress can be the causes both of those metamorphosed facies (until now presumed to come from depth up to 200 km) and of a shallower than supposed synthesis of biogenic and abiogenic hydrocarbons.en
dc.language.isoEnglishen
dc.publisher.nameNCGT (New Concept in Global Tectonics) Groupen
dc.relation.ispartofNCGT Newsletteren
dc.relation.ispartofseriesissue 47/ (2008)en
dc.subjectGeodynamics of Mediterranean regionen
dc.subjectIntermediate and deep hypocentersen
dc.subjectVertical movementsen
dc.subjectExpanding Earthen
dc.titleIs large scale subduction made unlikely by the mediterranean deep seismicity?en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber24-30en
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformationsen
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Modelsen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamicsen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamicsen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonicsen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonicsen
dc.relation.referencesArgnani, A., Serpelloni, E. and Bonazzi, C., 2007. Pattern of deformation around the central Aeolian Islands: evidence from multichannel seismic and GPS data. Terra Nova, v. 19, p. 317-323. Caputo, M.. Panza, G.F. and Postpischl, D., 1970. Deep structure of the Mediterranean Basin. Jour. Geophys. Res., v. 75, p. 4919-4923. Chiarabba, C., Jovane, L. and Di Stefano, R., 2005. A new view of Italian seismicity using 20 years of instrumental recordings. Tectonophysics, v. 395, p. 251-268. Cimini, G.B. and Marchetti, A., 2006. Deep structure of peninsular Italy from seismic tomography and subcrustal seismicity. In: Lavecchia, G. and G. Scalera (eds.), “Frontiers in Earth Sciences: New Ideas and Interpretations”. Annals of Geophysics, Supplement to v. 49, p. 331-345. Devoti, R., Ferraro, C., Guegen, E., Lanotte, R., Luceri, V., Nardi, A., Pacione, R., Rutigliano, P., Sciarretta, C. and Vespe, F., 2002. Geodetic control on recent tectonic movements in the central Mediterranean area. Tectonophysics, v. 346, p. 151-167. Engdahl, E.R., van der Hilst, R.D. and Buland, R.P., 1998. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull. Seism. Soc. Amer., v. 88, p. 722-743. England, P., 2003. The Alignment of Earthquake T-Axes with the Principal Axes of Geodetic Strain in the Aegean Region. Turkish Journal of Earth Sciences, v. 12, p. 47-53. Frepoli, G., Selvaggi, G., Chiarabba, C. and Amato, A., 1996. State of stress in the Southern Tyrrhenian subduction zone from fault-plane solutions. Geophysical Journal International, v. 125, p. 879-891. Fukao, Y., Widiyantoro, S. and Obayashi, M., 2001. Stagnant slabs in the upper and lower mantle transition region. Reviews of Geophysics, v. 39, p. 291-323. Giardini, D. and Velonà, M., 1991. The Deep Seismicity of the Tyrrhenian Sea. Terra Nova, v. 3, p. 57–64. Green, D. and Ringwood, A., (eds.) 1970. Phase Transformation & the Earth's Interior. Proceedings of the symposium held in Canberra, 6-10 January 1969, by the International Upper Mantle Committee and the Australian Academy of Sciences, North-Holland Publishing Company, Amsterdam, 519p. Hollenstein, H., Kahle, G., Geiger, A., Jenny, S., Goes, S. and Giardini, D., 2003. New GPS constraints on the Africa–Eurasia plate boundary zone in southern Italy. Geophys. Res. Lett., v. 30, 1935, doi:10.1029/2003GL017554. Knapp, J.H., Knapp, C.C., Raileanu, V., Matenco, L., Mocanu, V. and Dinu, C., 2005. Crustal constraints on the origin of mantle seismicity in the Vrancea Zone, Romania: The case for active continental lithospheric delamination. Tectonophysics, v. 410, p. 311-323. Mancktelow, N.S., 1995. Nonlithostatic pressure during sediment subduction and the development and exhumation of high pressure metamorphic rocks. Jour. Geophys. Res., v. 100 (B1), p. 571-582. Mancktelow, N.S. and Gerya, T.V., 2008. Non-lithostatic pressure during deformation. EGU General Assembly 2008, Vienna, Geophysical Research Abstracts, v. 10. Mart, Y., Ryan, W.B.F. and Lunina, O.V., 2005. Review of the tectonics of the Levant Rift system: the structural significance of oblique continental breakup. Tectonophysics, v. 395, p. 209-232. McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., Gurkan, O., Hamburger, M., Hurst, K., Kahle, H., Kastens, K., Kekelidze, G., King, R., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, A., Nadariya, M., Ouzounis, A., Paradissis, D., Peter, Y., Prilepin, M., Reilinger, R., Sanli, I., Seeger, H., Tealeb, A., Toksöz, M.N., and Veis, G., 2000. Global positioning system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Jour. Geophys. Res., v. 105 (B3), p. 5695-5719. McElhinny, M.W. and McFadden, P.L., 2000. Paleomagnetism, continents and oceans. Academic Press, New York, 380p. Müller, R.D., Roest, W.R., Royer, J.Y., Gahagan, L.M. and Sclater, J.G., 1997. Digital isochrons of the world’s ocean floor. Jour. Geophys. Res., v. 102, p. 3211-3214. Müller, R.D., Sdrolias, M., Gaina, C. and Roest, W.R., 2008. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem. Geophys. Geosyst., v. 9, Q04006, doi:10.1029/2007GC001743. Nicolescu, A. and Rosca, V., 1992. Map of the Bouguer anomaly in Romania, 1: 1,000,000. The Geological Institute of Romania. Ollier, C.D., 2003. The origin of mountains on an expanding Earth, and other hypotheses. In: G. Scalera and K.-H. Jacob (eds.) 2003: Why Expanding Earth?– A book in Honour of Ott Christoph Hilgenberg. Proceedings of the 3rd Lautenthaler Montanistisches Colloquium, Mining Industry Museum, Lautenthal (Germany) May 26, 2001 (INGV Publication, Rome), p. 129-160. Ollier, C.D. and Pain, C.F., 2000. The Origin of Mountains. Routledge, London, 345p. Papadopoulos, G., 1997. On the interpretation of large-scale seismic tomography images in the Aegean Sea area. Annali di Geofisica, v. XL, p. 37-42. Raileanu, V., Bala, A., Hauser, F., Prodehl, C. and Fielitz, W., 2005. Crustal properties from S-wave and gravity data along a seismic refraction profile in Romania. Tectonophysics, v. 410, p. 251-272. Ringwood, A.E., 1991. Phase transformations and their bearing on the constitution and dynamics of the mantle. Inaugural Ingerson Lecture delivered on May 12 1988 at the Goldschmidt Conference held in Baltimore, Geochim. Cosmochim. Acta, v. 55, p. 2083-2110. Salustri Galli, C., Torrini, A., Doglioni, C. and Scrocca, D., 2002. Divide and highest mountains vs subduction in the Apennines. Studi Geologici Camerti, v. 1, p. 143-153. Scalera, G., 2005a. A new interpretation of the Mediterranean arcs: Mantle wedge intrusion instead of subduction. Boll. Soc. Geol. It., Volume Speciale, no. 5, p. 129-147. Scalera, G., 2005b. The geodynamic meaning of the great Sumatran earthquake: inferences from short time windows. New Concepts in Global Tectonics Newsletter, no. 35, p. 8-23. Scalera, G., 2006a. The Mediterranean as a slowly nascent ocean. In: Lavecchia, G. and G. Scalera (eds.), “Frontiers in Earth Sciences: New Ideas and Interpretations”. Annals of Geophysics, Supplement to v. 49, p. 451-482. Scalera, G., 2006b. TPW and Polar Motion as due to an asymmetrical Earth expansion. In: Lavecchia G. and Scalera G. (eds.), 2006, “Frontiers in Earth Sciences: New Ideas and Interpretations”. Annals of Geophysics, Supplement to v. 49, p. 483-500. Scalera, G., 2006c. The geodynamic meaning of the deep earthquakes: first clues for a global perspective for fold belts? New Concepts in Global Tectonics Newsletter, no. 41, p. 45-54. Scalera, G., 2007a. Terremoti, trasformazioni di fase, catene a pieghe: è possibile una nuova prospettiva globale? Rend. Soc. Geol. It., Nuova Serie, v. 4, p. 296-299. Scalera, G., 2007b. Geodynamics of the Wadati-Benioff zone earthquakes: The 2004 Sumatra earthquake and other great earthquakes. Geofísica Internacional, v. 46, p. 19-50. Scalera, G., 2007c. A new model of orogenic evolution. Rend. Soc. Geol. It., Nuova Serie, v. 5, p. 214-218. Scalera, G., 2008. Great and old earthquakes against great and old paradigms – paradoxes, historical roots, alternative answers. Advances in Geosciences, v. 14, p. 41–57 Searle, M., Bradley, R.H. & Bilham, R., 2001. The Hindu Kush Seismic Zone as a Paradigm for the Creation of Ultrahigh-Pressure Diamond- and Coesite-Bearing Continental Rocks. The Journal of Geology, v. 109, p. 143–153. Serpelloni, E., Anzidei, M., Baldi, P., Casula G. and Galvani, A., 2006. GPS measurement of active strains across the Apennines. In: Lavecchia, G. and G. Scalera (eds.), “Frontiers in Earth Sciences: New Ideas and Interpretations”. Annals of Geophysics, Supplement to v. 49, p. 319-329. Serpelloni, E., Vannucci, G., Pondrelli, S., Argnani, A., Casula, G., Anzidei, M., Baldi, P. and Gasperini, P., 2007. Kinematics of theWestern Africa-Eurasia plate boundary from focal mechanisms and GPS data. Geophys. Jour. Int., v. 169, p. 1180–1200. Strutinski, C., Puşte, A. and Stan, R., 2006. The metamorphic basement of Romanian Carpathians: a discussion of K-Ar and 40Ar/39Ar ages. Studia Universitatis Babeş-Bolyai, Geologia, v. 51, p. 15 – 21. Tomek, Č. and PANCARDI Team, 2006. Dynamics of Ongoing Orogeny. PANCARDI Report, p. 14-26. van der Hoeven, A., Schmitt, G., Dinter, G., Mocanu, V. and Spakman, W., 2004. GPS Probes the Kinematics of the Vrancea Seismogenic Zone. EOS, Transactions, American Geophysical Union, v. 85 (19), 11 May, p.185 & 189–190. Viti, M., Albarello, D. and Mantovani E., 2006. Quantitative insights into the role of gravitational collapse in major orogenic belts. Annals of Geophysics, v. 49, p. 1289-1307. Weidle, C., Widiyantoro, S. and CALIXTO Working Group, 2005. Improving depth resolution of teleseismic tomography by simultaneous inversion of teleseismic and global P-wave traveltime data—application to the Vrancea region in Southeastern Europe. Geophys. Jour. Int., v. 162, p. 811–823. Widiyantoro, S., van der Hilst, R.D. and Wenzel, F., 2004. Deformation of the Aegean Slab in the Mantle Transition Zone. International Journal of Tomography & Statistics, D04, p. 1-14. Zeitler, P.K., Meltzer, A.S., Koons, P.O., Craw, D., Hallet, B. Chamberlain, C.P., Kidd, W.S.F., Park, S.K., Seeber, L., Bishop, M. and Shroder, J., 2001. Erosion, Himalayan geodynamics, and the geomorphology of metamorphism. GSA Today, v. 11, p. 4-9.en
dc.description.obiettivoSpecifico3.2. Tettonica attivaen
dc.description.journalTypeN/A or not JCRen
dc.description.fulltextopenen
dc.contributor.authorScalera, G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Unlikely Mediterr Subduction NCGT 47 June 2008 .pdfShort note2.54 MBAdobe PDFView/Open
Show simple item record

Page view(s) 5

384
checked on Apr 17, 2024

Download(s) 20

432
checked on Apr 17, 2024

Google ScholarTM

Check