Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3874
DC FieldValueLanguage
dc.contributor.authorallJovane, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallActon, G.; Department of Geology, University of California, Davis, CA, 95616, USAen
dc.contributor.authorallFlorindo, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallVerosub, K. L.; Department of Geology, University of California, Davis, CA, 95616, USAen
dc.date.accessioned2008-05-22T11:52:06Zen
dc.date.available2008-05-22T11:52:06Zen
dc.date.issued2008en
dc.identifier.urihttp://hdl.handle.net/2122/3874en
dc.description.abstractWe present a high-resolution paleomagnetic record from 682 discrete samples from Eltanin 27–21 (69.03°S 179.83°E), a 16-meter long piston core recovered in 1968 at a water depth of 3456 m by the USNS Eltanin as part of Operation Deep Freeze. After removal of a low-coercivity overprint, most samples yield stable characteristic remanent magnetization directions. The downhole variation in the magnetic inclination provides a well-resolved magnetostratigraphy from the Brunhes Chron (0–0.781 Ma), through the Reunion Subchron (2.128–2.148 Ma), and into Chron C2r.2r. The sedimentation rates are sufficiently high that even short-term geomagnetic features, like the Cobb Mountain excursion, are resolved. The record from Eltanin 27–21 provides new insights into the behavior of the geomagnetic field at high latitudes, about which very little is currently known. Using the variability in the inclinations during stable polarity intervals, we estimate that the dispersion in the paleomagnetic pole position over the past ~2 Myr is 30.3°±4.3°, which is significantly greater than observed at low to mid latitude sites. The higher dispersion observed at Eltanin 27–21 is consistent with numerical modeling of the geodynamo. That modeling has shown that polar vortices can develop in the Earth's core within the tangent cylinder, defined as the cylinder coaxial with the Earth's rotation axis and tangent to the inner core/outer core boundary. The polar vortices produce vigorous fluid motion in the core, which creates greater geomagnetic field variability above the tangent cylinder at the surface of the Earth. The tangent cylinder intersects the Earth's surface in the polar regions at 79.1° latitude, which is relatively close to the latitude of Eltanin 27–21.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofEarth and Planetary Science Lettersen
dc.relation.ispartofseries/ 267 (2008)en
dc.subjectpaleomagnetismen
dc.subjectgeomagnetismen
dc.subjectmagnetostratigraphyen
dc.subjectEltaninen
dc.subjectRoss Seaen
dc.subjectAntarcticaen
dc.subjecttangent cylinderen
dc.subjectgeodynamoen
dc.subjectCobb Mountain Subchronen
dc.subjectReunion Subchronen
dc.titleGeomagnetic field behavior at high latitudes from a paleomagnetic record from Eltanin core 27–21 in the Ross Sea sector, Antarcticaen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber435-443en
dc.identifier.URLhttp://www.sciencedirect.com/science/journal/0012821Xen
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetismen
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetismen
dc.identifier.doi10.1016/j.epsl.2007.12.006en
dc.relation.referencesActon, G.D., Guyodo, Y., Brachfeld, S.A., 2002. Magnetostratigraphy of sediment drifts on the continental rise of West Antarctica (ODP Leg 178, Sites 1095, 1096, and 1101). In: Barker, P.F., Camerlenghi, A., Acton, G.D., Ramsay, A.T.S. (Eds.), Proceedings of the Ocean Drilling Program. Scientific Results, vol. 178. Ocean Drilling Program, College Station, Texas, p. 1000. Arason, P., Levi, S., 2006a. The maximum likelihood solution to inclinationonly data. Eos Trans. AGU 86 (62), GP21B–GP1312 Fall Meet. Abstract. Arason, P., Levi, S., 2006b, The maximum likelihood solution for inclinationonly data, unpublished report downloaded 21 June 2007 from http://andvari. vedur.is/~arason/paleomag/. Aurnou, J.M.,Andreadis, S., Zhu, L.,Olson, P.L., 2003. Experiments on convection in Earth's core tangent cylinder. Earth Planet. Sci. Lett. 212, 119–134. Baraldo, A., Rapalini, A.E., Böhnel, H.,Mena1,M., 2003. Paleomagnetic study of Deception Island, South Shetland Islands, Antarctica. Geophys. J. Int. 153, 333–343. Bloxham, J., Jackson, A., 1992. Time-dependent mapping of the magnetic field at the core–mantle boundary. J. Geophys. Res. 97, 19537–19563. Cox, A., 1969. Confidence limits for the precision parameter κ. Geophys. J. R. Astron. Soc. 18, 545–549. Cox, A., Gordon, R.G., 1984. Paleolatitudes determined from paleomagnetic data from vertical cores. Rev. Geophys. Space Phys. 22, 47–72. Fillon, R.H., 1975. Late Cenozoic paleo-oceanography of Ross Sea, Antarctica. Bull. Geol. Soc. Am. 86, 839–845. Glatzmaier, G.A., Roberts, P.H., 1995. A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle. Phys. Earth Planet. Inter. 91, 63–75. Goodell, H.G., 1968. USNS Eltanin Cruises 16–27, core descriptions: sedimentology research Laboratory Contribution, n. 25, Department of Geology, Florida State University, Tallahassee, 247 p., http://www.arf.fsu. edu/publications/ELT_16_27.pdf. Gradstein, F.M., Ogg, J.G., Smith, A.G., 2004. A Geological Time Scale 2004. Cambridge Univ. Press, Cambridge. 589 p. Gubbins, D., Bloxham, J., 1985. Geomagnetic field analysis — III. Magnetic fields on the core–mantle boundary. Geophys. J. R. Astron. Soc. 80, 695–713. Gubbins, D., Bloxham, J., 1987. Morphology of the geomagnetic field and implications for the geodynamo. Nature 325, 509–511. Gubbins, D., Jones, A.L., Finlay, C.C., 2006. Fall in Earth's magnetic field is erratic. Science 312, 900–902. Hartl, P., Tauxe, L., 1996. A precursor to the Matuyama/Brunhes transition-field instability as recorded in pelagic sediments. Earth Planet. Sci. Lett. 138, 121–135. Hulot, G., Eymin, C., Langlais, B., Mandea, M., Olsen, N., 2002. Small-scale structure of the geodynamo inferred from Oersted and Magsat satellite data. Nature 416, 620–623. Jackson, A., Jonkers, A.R.T., Walker, M.R., 2000. Four centuries of geomagnetic secular variation from historical records. Phil. Trans. R. Soc. London Ser. A 358, 957–990. Kennett, J.P., 1977. Cenozoic evolution of Antarctic glaciation, the Circum– Antarctic Ocean, and their impact on global paleoceanography. J. Geophys. Res. 82, 3843–3860. Kirschvink, J.L., 1980. The least-squares line and plane and the analysis of paleomagnetic data. Geophys. J. R. Astron. Soc. 62, 699–718. Kodama, K.P., 1997. A successful rock magnetic technique for correcting paleomagnetic inclination shallowing: case study of the Nacimiento Formation, New Mexico. J. Geophys. Res. 102, 5193–5205. Kuang,W., Bloxham, J., 1997. An Earth-like numerical dynamo model. Nature 389, 371–374. McFadden, P.L., Reid, A.B., 1982. Analysis of palaeomagnetic inclination data. Geophys. J. R. Astron. Soc. 69, 307–319. Nowaczyk, N.R., Knies, J., 2000. Magnetostratigraphic results from eastern Arctic Ocean-AMS 14C ages and relative paleointensity data of the Mono Lake and Laschamp geomagnetic reversal excursions. Geophys. J. Int. 140, 185–197. Nowaczyk, N.R., Frederichs, T.W., Eisenhauer, A., Gard, G., 1994. Magnetostratigraphic data from late Quaternary sediments from the Yermak Plateau, Arctic Ocean: evidence for four geomagnetic polarity events within the last 170 Ka of the Brunhes Chron. Geophys. J. Int. 117, 453–471. Nowaczyk, N.R., Frederichs, T.W., Kassens, H., Norgaard-Pedersen, N., Spielhagen, R.F., Stein, R., Weiel, D., 2001. Sedimentation rates in the Makarov Basin, central Artic Ocean: A paleomagnetic and rock magnetic approach. Paleoceanography 16, 368–389. Olson, P., Aurnou, P., 1999. A polar vortex in the Earth's core. Nature 402, 170–173. Olson, P., Sumita, I., Aurnou, J., 2002. Diffusive magnetic images of upwelling patterns in the core. Geophys. J. Int. 107, 2348. doi:10.1029/2001JB000384. Quidelleur, X., Courtillot, V., 1996. On low-degree spherical harmonic models of paleosecular variation. Phys. Earth Planet. Inter. 95, 55–77. Quidelleur, X., Valet, J.-P., Courtillot, V., Hulot, G., 1994. Long-term geometry of the geomagnetic field for the last five million years; an updated secular variation database. Geophys. Res. Lett. 21, 1639–1642. Singer, B.S., Relle, M.K., Hoffman, K.A., Battle, A., Laj, C., Guillou, H., Carracedo, J.C., 2002. Ar/Ar ages from transitionally magnetized lavas on La Palma, Canary Islands, and the geomagnetic instability timescale. J. Geophys. Res. 107, 2307. doi:10.1029/2001JB001613. Spielhagen, R.F., Baumann, K.-H., Erlenkeuser, H., Nowaczyk, N.R., Norgaard- Pedersen, N., Vogt, C., Weiel, D., 2004. Arctic Ocean deep-sea record of northern Eurasian ice sheet history. Quat. Sci. Rev. 23, 1455–1483. Tauxe, L., 2005. Inclination flattening and the geocentric axial dipole hypothesis. Earth Planet. Sci. Lett. 233, 247–261. Tauxe, L., Gans, P., Mankinen, E.A., 2004. Paleomagnetism and Ar-40/Ar-39 ages from volcanics extruded during the Matuyama and Brunhes Chrons near McMurdo Sound, Antarctica. Geochem. Geophys. Geosys. 5, Q06H12. Wardinski, I., Holme, R., 2006. A time-dependent model of the Earth's magnetic field and its secular variation for the period 1980–2000. J. Geophys. Res. 111, B12101. doi:10.1029/2006JB004401. Watkins, N.D., Kennett, J.P., 1972. Regional sedimentary disconformities and upper Cenozoic changes in bottom water velocity between Australia and Antarctica. In: Hayes, D.E. (Ed.), Antarctic Oceanology II, The Australian– New Zealand Sector. Antartic Res. Ser., vol.19, pp. 273–294.en
dc.description.obiettivoSpecifico2.2. Laboratorio di paleomagnetismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorJovane, L.en
dc.contributor.authorActon, G.en
dc.contributor.authorFlorindo, F.en
dc.contributor.authorVerosub, K. L.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentDepartment of Geology, University of California, Davis, CA, 95616, USAen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentDepartment of Geology, University of California, Davis, CA, 95616, USAen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptUniversity of California, Davis-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione AC, Roma, Italia-
crisitem.author.deptUniversity of California, Davis,-
crisitem.author.orcid0000-0002-3285-4022-
crisitem.author.orcid0000-0002-6058-9748-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Jovane_eltanin_def.pdf1.39 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

11
checked on Feb 10, 2021

Page view(s)

148
checked on Apr 17, 2024

Download(s)

18
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric