Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3852
DC FieldValueLanguage
dc.contributor.authorallSzoenyi, M.; Institute of Geophysics, Schafmattstrasse 30, ETH Zurich, 8093 Zurich, Switzerlanden
dc.contributor.authorallSagnotti, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallHirt, A. M.; Institute of Geophysics, Schafmattstrasse 30, ETH Zurich, 8093 Zurich, Switzerlanden
dc.date.accessioned2008-05-14T06:30:41Zen
dc.date.available2008-05-14T06:30:41Zen
dc.date.issued2008en
dc.identifier.urihttp://hdl.handle.net/2122/3852en
dc.description.abstractElevated levels of airborne particulate matter (PM) are a current problem for air quality in many major metropolitan areas. Many European cities have tightened the PM limits in the air, due to advances in monitoring PM levels. In order to establish guidelines for monitoring and curbing anthropogenic PM output, a better understanding of its origin, composition and diffusion is required. Biomonitoring of magnetic properties of tree leaves has been suggested previously to be a good approach to measure pollution levels in cities both in space and time. We report on a magnetic biomonitoring study of PM in the city of Rome, conducted from 2005 October to December. We collected approximately 180 different sample sets of tree leaves of Quercus ilex, an evergreen oak widely distributed in Rome, at 112 different locations. Specific magnetic susceptibility χ of the leaf is used as a fast, easy and cost-effective proxy to assess levels of primary anthropogenic airborne PM pollution. Highly polluted areas correlate with high traffic areas, with an average susceptibility value of χ = 3.2 × 10−7 m3 kg−1. Low traffic zones are characterized by values more than an order of magnitude lower at χ = 1.4 × 10−8 m3 kg−1, and the background magnetic susceptibility is around χ = 2.6 × 10−9 m3 kg−1. The data show that distance dependence from the source is the most significant factor for the concentration of magnetic PM, and that pollution levels and sources can be reliably delineated by measuring magnetic susceptibility values on tree leaf samples of Q. ilex. A new protocol for magnetic susceptibility measurements is proposed, in order to account for changes due to water evaporation in the leaves as a function of time after collection of the samples. Additional magnetic analyses, such as acquisition of artificial remanences and hysteresis properties, were used to characterize the mineralogy and grain size of the magnetic PM. The results indicate that the population of ferrimagnetic phases have a homogenous composition and grain size throughout the investigated area.en
dc.language.isoEnglishen
dc.publisher.nameBlackwell Publishingen
dc.relation.ispartofGeophysical Journal Internationalen
dc.relation.ispartofseries1 / 173 (2008)en
dc.subjectEnvironmental magnetismen
dc.subjectRock and mineral magnetismen
dc.titleA refined biomonitoring study of airborne particulate matter pollution in Rome, with magnetic measurements on Quercus Ilex tree leavesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber127-141en
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.08. Instruments and techniquesen
dc.identifier.doi10.1111/j.1365-246X.2008.03715.xen
dc.relation.referencesDekkers, M.J., Passier, H.F. & Schoonen, M.A.A., 2000. Magnetic properties of hydrothermally synthesized greigite (Fe3S4) – II. High- and lowtemperature characteristics, Geophys. J. Int., 141, 809–819. Dunlop, D.J. & O¨ zdemir, O¨ ., 1997. Rock Magnetism: Fundamentals and Frontiers,, 573 pp., Cambridge Univ. Press, Cambridge. Evans, M.E. & Heller, F., 2003. Environmental Magnetism, Principles and Applications of Enviromagnetics, 299 pp., Academic Press, London. Flanders, P.J., 1999. Identifying fly ash at a distance from fossil fuel power stations, Environ. Sci. Tech., 33, 528–532. Gautam, P., Blaha, U., Appel, E. & Neupane, G., 2004. Environmental magnetic approach towards the quantification of pollution in Kathmandu urban area, Nepal, Phys. Chem. Earth., 29, 973–984. Gillies, J.A., Gertler, A.W., Sagebiel, J.C. & Dippel, W.A., 2001. On-road particulate matter PM2.5 and PM10 emissions in the Sepulveda Tunnel, Los Angeles, Calif. Environ. Sci. Tech., 35, 1054–1063. Goddu, S.R., Appel, E., Jordanova, D. & Wehland, F., 2004. Magnetic properties of road dust from Visakhapatnam (India)—relationship to industrial pollution and road traffic, Phys. Chem. Earth, 29, 985– 995. Gramotnev, G., Brown, R., Ristovski, Z., Hitchins, J.&Morawska, L., 2003. Determination of average emission factors for vehicles on a busy road, Atmos. Environ., 37, 465–474. Gratani, L., Crescente, M.F.&Petruzzi, M., 2000. Relationship between leaf life-span and photosynthetic activity of Quercus Ilex in polluted urban areas (Rome), Environ. Poll., 110, 19–28. Hirt, A.M., Banin, A. & Gehring, A.U., 1993. Thermal generation of ferromagnetic minerals from iron-enriched smectites, Geophys. J. Int., 115, 1161–1168. Hoffmann,V., Knab, M.&Appel, E., 1999. Magnetic susceptibility mapping of roadside pollution, J. Geochem. Expl., 66, 313–326. Jordanova,D., Hoffmann,V.&Fehr, K.T., 2004. Mineral magnetic characterization of anthropogenic magnetic phases in the Danube river sediments (Bulgarian parts), Earth planet. Sci. Lett., 221, 71–89. Jordanova, D., Jordanova, N. & Hoffmann, V., 2006. magnetic mineralogy and grain-size dependance of hysteresis parameters of single spherules from industrial waste products, Phys. Earth planet. Int., 154, 255– 265. King, J.W., Banerjee, S.K., Marvin, J.A.&O¨ zdemir, O¨ ., 1982.Acomparison of different magnetic methods for determining the relative grain size of magnetite in natural materials: some results from lake sediments, Earth Planet. Sci. Lett., 59, 404–419. Knab, M., Appel, E. & Hoffmann, V., 2001. Separation of the anthropogenic portion of heavy metal contents along a highway by means of magnetic susceptibility and fuzzy c-means cluster analysis, Eur. J. Environ. Eng. Geophys., 6, 125–140. Magiera, T., Strzyszcz, Z., Kapicka, A. & Petrovsk´y, E., 2006. Discrimination of lithogenic and anthropogenic influences on topsoils magnetic susceptibility in Central Europe, Geoderma, 130, 299–311. Matzka, J. & Maher, B.A., 1999. Magnetic biomonitoring of roadside tree leaves: identification of spatial and temporal variations in vehicle-derived particles, Atmos. Environ., 33, 4565–4569. Morawska, L., Thomas, S., Bofinger, N.,Wainwright, D. & Neale, D., 1998. Comprehensive characterization of aerosols in a subtropical urban atmosphere: particle size distribution and correlation with gaseous pollutants, Atmos. Environ., 32, 2467–2478. Moreno, E., Sagnotti, L., Dinar`es-Turell, J.,Winkler, A.&Cascella, A., 2003. Biomonitoring of traffic air pollution in Rome using magnetic properties of tree leaves, Atmos. Environ., 37, 2967–2977. Morris, W.A., Versteeg, J.K., Bryant, D.W., Legzdins, A.E., McCarry, B.E. & Marvin, C., 1995. H. Preliminary comparisons between mutagenic and magnetic susceptibility of respirable airborne particle, Atmos. Environ., 29, 3441–3450. Muxworthy, A.R., Matzka, J.&Petersen, N., 2001. Comparison of magnetic parameters of urban atmospheric particulate matter with pollution and meteorological data, Atmos. Environ., 35, 4379–4386. Muxworthy, A.R., Schmidbauer, E. & Petersen, N., 2002. Magnetic properties and M¨ossbauer spectra of urban atmospheric particulate matter: a case study from Munich, Germany, Geophys. J. Int., 150, 558–570. Petrovsk´y, E. & Elwood, B., 1999. Magnetic monitoring of air-, land- and water pollution, in Quaternary Climates, Environments and Magnetism, pp. 279–322, eds Maher,B.&Thompson, R., Cambridge University Press, Cambridge. Petrovsk´y, E. & Kapiˇcka, A., 2006. On determination of the Curie point from thermomagnetic curves, J. Geophys. Res., 111, B12S27, doi:10.1029/2006JB004507. Petrovsk´y, E., Kapicka, A., Jordanova, N., Knab, M. & Hoffmann, V., 2000. Low-field magnetic susceptibility: a proxy method of estimating increased pollution of different environmental systems, Environ. Geol., 39, 312–318. Petrovsk´y, E., Kapicka, A., Jordanova, N. & Boruvka, L., 2001. Magnetic properties of alluvial soils contaminated with lead, zinc and cadmium, J. Appl. Geophys., 48, 127–136. Pike, C.R., Roberts, A.P.&Verosub, K.L., 1999. Characterizing interactions in fine magnetic particle systems using first order reversal curves, J. Appl. Phys., 85, 6660–6667. Pope, III C.A. & Dockery, D.W., 1999. Epidemiology of particle effects, in Air Pollution and Health, pp. 673–705, eds Holgate, S.T., Samet, J.M., Koren, H.S. & Maynard, R.L., Academic Press, London. Roberts, A.P., Pike, C.R. & Verosub, K.L., 2000. First-order reversal curve diagrams: a new tool for characterizing the magnetic properties of natural samples, J. Geophys. Res, B105, 28 461–28 475. Sagnotti, L., Rochette, P., Jackson, M., Vadeboin, F., Dinar`es-Turell, J.,Winkler, A. & the Mag-Net Science Team, 2003. Inter-laboratory calibration of low-field magnetic and anhysteretic susceptibility measurements, Phys. Earth Planet. Int., 138, 25–38. Sagnotti, L., Macr`ı, P., Egli, R. & Mondino, M., 2006. Magnetic properties of atmospheric particulate matter from automatic air sampler stations in Latium (Italy): toward a definition of magnetic fingerprints for natural and anthropogenic PM10 sources, J. geophys. Res., 111, B12S22, doi:10.1029/2006JB004508. Spiteri, C., Kalinski, V., R¨osler,W., Hoffmann, V. & Appel, E., MAGPROX team, 2005. Magnetic screening of a pollution hotspot in the Lausitz area, Eastern Germany: correlation analysis between magnetic proxies and heavy metal contamination in soils, Environ. Geol., 49, 1–9. Spassov, S., Egli, R., Heller, F., Nourgaliev, D.K. & Hannam, J., 2004. Magnetic quantification of urban pollution sources in atmospheric particulate matter, Geophys J. Int., 159, 555–564. Stacey, F.D. & Banerjee, S.K., 1974. The Physical Principles of Rock Magnetism. Elsevier, New York, 195 pp. Sz¨onyi, M., Sagnotti, L. & Hirt, A.M., 2007. On leaf magnetic homogeneity in particulate matter biomonitoring studies, Geophys. Res. Lett., 34, L06306, doi:10.1029/2006GL029076. Tuch, T.M., Wehner, B., Pitz, M., Cyrys, J., Heinrich, J., Kreyling, W.G., Wichmann, H.E. & Wiedensohler, A., 2003. Long-term measurements of size-segregated ambient aerosol in two German cities located 100 km apart, Atmos. Environ., 37, 4687–4700. Urbat, M., Lehndorff, E. & Schwark, L., 2004. Biomonitoring of air quality in Cologne conurbation using pine needles as a passive sampler. Part I: magnetic properties, Atmos. Environ., 38, 3781–3792. Veneva, L., Hoffmann, V., Jordanova, D., Jordanova, N. & Fehr, Th., 2004. Rock magnetic, mineralogical and microstructural characterization of fly ashes from Bulgarian power plants and the nearby anthropogenic soils, Phys. Chem. Earth, 29, 1011–1023. Wichmann, H.E.&Peters, A., 2000. Epidemiological evidence of the effects of ultrafine particle exposure, Philos. Trans. Roy. Soc. Lond., A358, 2751– 2769. Winkelhofer, M. & Zimanyi, G.T., 2006. Extracting the intrinsic switching field distribution in perpendicular media: a comparative analysis, J. Appl. Phys., 99, 08E710. Xie, S., Dearing, J.A. & Bloemendal, J., 2000. The organic content of street dust in Liverpool, UK, and its association with dust magnetic properties, Atmos. Environ., 34, 269–275. Yamanaka, T.&Okita, M., 2001. Magnetic properties of the Fe2SiO4-Fe3O4 spinel solid solutions, Phys. Chem. Miner., 28, 102–109.en
dc.description.obiettivoSpecifico2.2. Laboratorio di paleomagnetismoen
dc.description.obiettivoSpecifico3.8. Geofisica per l'ambienteen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorSzoenyi, M.en
dc.contributor.authorSagnotti, L.en
dc.contributor.authorHirt, A. M.en
dc.contributor.departmentInstitute of Geophysics, Schafmattstrasse 30, ETH Zurich, 8093 Zurich, Switzerlanden
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentInstitute of Geophysics, Schafmattstrasse 30, ETH Zurich, 8093 Zurich, Switzerlanden
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptInstitute of Geophysics, Schafmattstrasse 30, ETH Zurich, 8093 Zurich, Switzerland-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptInstitute of Geophysics, Schafmattstrasse 30, ETH Zurich, 8093 Zurich, Switzerland-
crisitem.author.orcid0000-0003-3944-201X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Szoenyi et al 08_GJI_173_127-141.pdf818.06 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

57
checked on Feb 10, 2021

Page view(s)

105
checked on Apr 17, 2024

Download(s)

22
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric