Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3851
DC FieldValueLanguage
dc.contributor.authorallEtiope, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallMilkov, A. V.; BP America Exploration and Production Technology Group, Houston, Texas, USAen
dc.contributor.authorallDerbyshire, E.; Centre for Quaternary Research, Royal Holloway, University of London, UKen
dc.date.accessioned2008-05-14T06:27:26Zen
dc.date.available2008-05-14T06:27:26Zen
dc.date.issued2008en
dc.identifier.urihttp://hdl.handle.net/2122/3851en
dc.description.abstractThe “methane-led hypotheses” assume that gas hydrates and marine seeps are the sole geologic factors controlling Quaternary atmospheric and climate changes. Nevertheless, a wider class of geologic sources of methane exist which could have played a role in past climate changes. Beyond offshore seepage, relevant geologic emissions of methane (GEM) are from onshore seepage, including mud volcanism, microseepage and geothermal flux; altogether GEM are the second most important natural source of atmospheric methane at present. The amount of methane entering the atmosphere from onshore GEM seems to prevail on that from offshore seepage. Onshore sources inject a predominantly isotopically heavy (13C-enriched) methane into the atmosphere. They are controlled mainly by endogenic (geodynamic) processes, which induce large-scale gas flow variations over geologic and millennial time scales, and only partially by exogenic (surface) conditions, so that they are not affected by negative feedbacks. The eventual influence on atmospheric methane concentration does not necessarily require catastrophic or abrupt releases, as proposed for the “clathrate gun hypothesis”. Enhanced degassing from these sources could have contributed to the methane trends observed in the ice core records, and could explain the late Quaternary peaks of increased methane concentrations accompanied by the enrichment of isotopically heavy methane, as recently observed. This hypothesis shall be tested by means of robust multidisciplinary studies, mainly based on a series of atmospheric, biologic and geologic proxies.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofGlobal and Planetary Changeen
dc.relation.ispartofseries1-2 / 61 (2008)en
dc.subjectclimate changeen
dc.subjectmethaneen
dc.subjectgreenhouse gas emissionsen
dc.subjectQuaternaryen
dc.titleDid geologic emissions of methane play any role in Quaternary climate change?en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber79-88en
dc.identifier.URLhttp://www.sciencedirect.com/science/journal/09218181en
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gasesen
dc.identifier.doi10.1016/j.gloplacha.2007.08.008en
dc.relation.referencesAliyev, A.A., Guliyev, I.S., Belov, I.S., 2002. Catalogue of Recorded Eruptions of Mud Volcanoes of Azerbaijan. Pub. House “Nafta-Press”, Baku. 89 pp. Blunier, T., Brook, E., 2001. Timing of millennial-scale climate changes in Antarctica and Greenland during the last glacial period. Science 291, 109–112. Brook, E., Sowers, T., Orchardo, J., 1996. Rapid variations in atmospheric methane concentration during the past 110,000 years. Science 273, 1087–1091. Cannariato, K.G., Stott, L.D., 2004. Evidence against clathrate-derived methane release to Santa Barbara Basin surface waters? Geochem. Geophys. Geosystem 5, Q05007. doi:10.1029/2003GC000600. Chappellaz, J., Barnola, J.M., Raynaud, D., Korotkevich, Y.S., Lorius, C., 1990. Ice-core record of atmospheric methane over the past 160,000 years. Nature 345, 127–131. Chappellaz, J., Fung, I.Y., Thompson, A.M., 1993. The atmospheric CH4 increase since the Last Glacial Maximum (1) Source estimates. Tellus 45B, 228–241. Charlou, J.L., Donval, J.P., Zitter, T., Roy, N., Jean-Baptiste, P., Foucher, J.P., Woodside, J., MEDINAUT Scientific Party, 2003. Evidence of methane venting and geochemistry of brines on mud volcanoes of the eastern Mediterranean Sea. Deep-Sea Res. 50 (8), 941–958. Clarke, R.H., Cleverly, R.W., 1991. Petroleum seepage and post-accumulation migration. In: England, W.A., Fleet, A.J. (Eds.), Petroleum Migration. . Geological Society Special Publication, vol. 59. Geological Society of London, Bath, pp. 265–271. Crutzen, P.J., 1991. Methane's sinks and sources. Nature 350, 380–381. Crutzen, P.J., Bruhl, C., 1993. A model study of atmospheric temperatures and the concentrations of ozone, hydroxyl, and some other photochemically active gases during the glacial, the preindustrial Holocene and the present. Geophys. Res. Lett. 20, 1047–1050. Dadashev, A.A., Guliyev, I.S., 1989. Isotope Composition of Carbon in Methane of Azerbaijan MVas Indicator of Gas Formation and Preservation into Subsuface of South Caspian Basin. Izvestiya Akademii Nauk Azerb. SSR, Seriya nauk o Zemle, vol. 1, pp. 7–12 (in Russian). Dia, A.N., Castrec, M., Boulegue, J., Comeau, P., 1999. Trinidad mud volcanoes: where do the expelled fluids come from? Geochim. Cosmochim. Acta 63 (7/8), 1023–1038. Dickens, G.R., Paull, C.K., Wallace, P., ODP Leg 164 Scientific Party, 1997. Direct measurement of in situ methane quantities in a large gas-hydrate reservoir. Nature 385, 426–428. Dimitrov, L., 2002. Mud volcanoes — the most important pathway for degassing deeply buried sediments. Earth-Sci. Rev. 59, 49–76. Dimitrov, L., 2003. Mud volcanoes — a significant source of atmospheric methane. Geo Mar. Lett 23, 155–161. EEA, 2004. Joint EMEP/CORINAIR Atmospheric Emission Inventory Guidebook, 4th Ed. European Environment Agency, Copenhagen. Available at http://reports.eea.eu.int/EMEPCORINAIR4/en. Etiope, G., 2004. GEM—Geologic Emissions of Methane, the missing source in the atmospheric methane budget. Atmos. Environ. 38 (19), 3099–3100. Etiope, G., 2006. Evaluation of geological emissions of methane in Europe. Contribution for the NATAIR Project. . NATAIR project report, EU contract no. 513699, Institute of Energy Economics and the Rational Use of EnergyUniversity of Stuttgart. 20 pp. Etiope, G., Klusman, R.W., 2002. Geologic emissions of methane to the atmosphere. Chemosphere 49, 777–789. Etiope, G., Martinelli, G., 2002. Migration of carrier and trace gases in the geosphere: an overview. Phys. Earth Planet. Inter. 129 (3–4), 185–204. Etiope, G., Milkov, A.V., 2004. A new estimate of global methane flux from onshore and shallow submarine mud volcanoes to the atmosphere. Environ. Geol. 46, 997–1002. Etiope, G., Klusman, R.W., in press. Microseepage in drylands: flux and implications in the global atmospheric source/sink budget of methane. Global Planet. Change. Etiope, G., Feyzullaiev, A., Baciu, C.L., Milkov, A.V., 2004. Methane emission from mud volcanoes in eastern Azerbaijan. Geology 32 (6), 465–468. Etiope, G., Papatheodorou, G., Christodoulou, D., Ferentinos, G., Sokos, E., Favali, P., 2006. Methane and hydrogen sulfide seepage in the NW Peloponnesus petroliferous basin (Greece): origin and geohazard. AAPG Bull. 90 (5), 701–713. Etiope, G., Martinelli, G., Caracausi, A., Italiano, F., 2007. Methane seeps and mud volcanoes in Italy: gas origin, fractionation and emission to the atmosphere. Geophys. Res. Lett. 34, L14303. doi:10.1029/2007GL030341. Fowler, S.R., Mildenhall, J., Zalova, S., 2000. Mud volcanoes and structural development on Shah Deniz. J. Pet. Sci. Eng. 28, 189–206. Ginsburg, G.D., Milkov, A.V., Soloviev, V.A., Egorov, A.V., Cherkashev, G.A., Vogt, P.R., Crane, K., Lorenson, T.D., Khutorskoy, M.D., 1999. Gas hydrate accumulation at the Haakon Mosby mud volcano. Geo Mar. Lett. 19, 57–67. Gold, T., Soter, S., 1985. Fluid ascent through the solid lithosphere and its relation to earthquakes. PAGEOPH 122, 492–530. Greinert, J., Bohrmann, G., Suess, E., 2001. Methane venting and gas hydraterelated carbonates at the hydrate ridge: their classification, distribution and origin. In: Paull, C.K., Dillon,W.P. (Eds.), Natural Gas Hydrates: Occurrence, Distribution, and Detection. Geopohysical Monograph, vol. 124, pp. 99–113. Guliyev, I.S., Feyzullayev, A.A., 1997. All about mud volcanoes. Baku Pub. House, NAFTA-Press, 120 pp. Hensen, C., Wallmann, K., Schmidt, M., Ranero, C.R., Suess, E., 2004. Fluid expulsion related to mud extrusion off Costa Rica—a window to the subducting slab. Geology 32, 201–204. Hinrichs,K.-U.,Hmelo, L.R., Sylva, S.P., 2003.Molecular fossil record of elevated methane levels in Late Pleistocene coastal waters. Science 299, 1214–1217. Hornafius, J.S., Quigley, D., Luyendyk, B.P., 1999. The world's most spectacular marine hydrocarbon seeps (Coal Oil Point, Santa Barbara Channel, California): quantification of emissions. J. Geophys. Res. 104, 20703–20711. Hovland, M., Judd, A.G., 1988. Seabed Pockmarks and Seepages: Impact on Geology, Biology, and theMarine Environment. Graham& Trotman, London. Hunt, J.M., 1996. Petroleum Geochemistry and Geology. W.H. Freeman and Co., New York. 743 pp. Huseynov, D.A., Guliyev, I.S., 2004. Mud volcanic natural phenomena in the South Caspian Basin: geology, fluid dynamics and environmental impact. Environ. Geol. 46, 1012–1023. Intergovernmental Panel on Climate Change, 2001. In: Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A. (Eds.), Climate Change 2001: The Scientific Basis. Cambridge Univ. Press, Cambridge, UK. 881 pp. Jones, V.T., Drozd, R.J., 1983. Predictions of oil or gas potential by near-surface geochemistry. AAPG Bull. 67, 932–952. Judd, A.G., Charlier, R.H., Lacroix, A., Lambert, G., Rouland, C., 1993. Minor sources of methane. In: Khalil, M.A.K. (Ed.), Atmospheric Methane: Sources, Sinks and Role in Global Change. Springer-Verlag, Berlin Heidelberg, pp. 432–456. Judd, A.G., Hovland, M., Dimitrov, L.I., Garcia Gil, S., Jukes, V., 2002. The geological methane budget at Continental Margins and its influence on climate change. Geofluids 2, 109–126. Kennett, J.P., Cannariato, K.G., Hendy, I.L., Behl, R.J., 2003. Methane hydrates in Quaternary climate change. The Clathrate Gun Hypothesis. American Geophysical Union, Washington, DC, p. 216. Klusman, R.W., Jakel, M.E., LeRoy, M.P., 1998. Does microseepage of methane and light hydrocarbons contribute to the atmospheric budget of methane and to global climate change? Assoc. Petrol. Geochem. Explor. Bull. 11, 1–55. Klusman, R.W., Leopold, M.E., LeRoy, M.P., 2000. Seasonal variation in methane fluxes from sedimentary basins to the atmosphere: results from chamber measurements and modeling of transport from deep sources. J. Geophys. Res. 105D, 24,661–24,670. Kvenvolden, K.A., 1988. Methane hydrates—a major reservoir of caron in the shallow geosphere? Chem. Geol. 71, 41–51. Kvenvolden, K.A., Rogers, B.W., 2005. Gaia's breath — global methane exhalations. Mar. Petrol. Geol. 22, 579–590. Kvenvolden, K.A., Lorenson, T.D., Reeburgh, W., 2001. Attention turns to naturally occurring methane seepage. EOS 82, 457. Lacroix, A.V., 1993. Unaccounted-for sources of fossil and isotopically enriched methane and their contribution to the emissions inventory: a review and synthesis. Chemosphere 26, 507–557. Lavrushin, V.Y., Polyak, B.G., Prasolov, R.M., Kamenskii, I.L., 1996. Sources of material in mud volcano products (based on isotopic, hydrochmical and geological data). Lithos Miner. Res. 31, 557–578. Leifer, I., Patro, R.K., 2002. The bubble mechanism for methane transport from the shallow sea bed to the surface: a review and sensitivity study. Cont. Shelf Res. 22 (16), 2409–2428. Lelieveld, J., Crutzen, P.J., Dentener, F.J., 1998. Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus 50B, 128–150. Link, W.K., 1952. Significance of oil and gas seeps in world oil exploration. AAPG Bull. 36, 1505–1540. Luyendyk, B., Kennett, J., Clark, J.F., 2005. Hypothesis for increased atmospheric methane input from hydrocarbon seeps on exposed continental shelves during glacial low sea level. Mar. Petrol. Geol. 22, 591–596. Macgregor, D.S., 1993. Relationships between seepage, tectonics and subsurface petroleum reserves. Mar. Pet. Geol. 10, 606–619. Maslin, M.A., Thomas, E., 2003. Balancing the deglacial global carbon budget; the hydrate factor. Quat. Sci. Rev. 22, 1729–1736. Milkov, A.V., 2000. Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar. Geol. 167, 29–42. Milkov, A.V., 2004. Global estimates of hydrate-bound gas in marine sediments: How much is really out there? Earth-Sci. Rev. 66, 183–197. Milkov, A.V., 2005. Molecular and stable isotope compositions of natural gas hydrates: A revised global dataset and basic interpretations in the context of geological settings. Org. Geochem. 36, 681–702. Milkov, A.V., Sassen, R., 2002. Economic geology of offshore gas hydrate accumulations and provinces. Mar. Pet. Geol. 19, 1–11. Milkov, A.V., Sassen, R., 2003. Two-dimensional modeling of gas hydrate decomposition in the northwestern Gulf of Mexico: significance to global change assessment. Glob. Planet. Change 36, 31–46. Milkov, A.V., Claypool, G.E., Lee, Y.-J., Dickens, G.R., Xu, W., Borowski, W. S., ODP Leg 204 Scientific Party, 2003a. In situ methane concentrations at Hydrate Ridge offshore Oregon: new constraints on the global gas hydrate inventory from an active margin. Geology 31, 833–836. Milkov, A.V., Sassen, R., Apanasovich, T.V., Dadashev, F.G., 2003b. Global gas flux from mud volcanoes: a significant source of fossil methane in the atmosphere and the ocean. Geophys. Res. Lett. 30 (2), 1037. doi:10.1029/ 2002GL016358. Milkov, A.V., Vogt, P.R., Crane, K., Lein, A.Yu., Sassen, R., Cherkashev, G.A., 2004. Geological, geochemical, and microbial processes at the hydratebearing Håkon Mosby mud volcano: a review. Chem. Geol. 205, 347–366. Morner, N.A., 1978. Faulting, fracturing and seismicity as functions of glacioisostasy in Fennoscandia. Geology 6, 41–45. Morner, N.A., Etiope, G., 2002. Carbon degassing from the lithosphere. Glob. Planet. Change 33 (1–2), 185–203. Nisbet, E.G., 2002. Have sudden large releases of methane from geological reservoirs occurred since the Last Glacial Maximum, and could such releases occur again? Philos. Trans. R. Soc. Lond. 360, 581–607. Pentecost, A., 1995. The Quaternary travertine deposits of Europe and Asia Minor. Quat. Sci. Rev. 14, 1005–1028. Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., Pepin, L., Ritz, C., Saltzman, E., Stievenard, M., 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436. Planke, S., Svensen, H., Hovland, M., Banks, D.A., Jamtveit, B., 2003. Mud and fluid migration in active mud volcanoes in Azerbaijan. Geo Mar. Lett. 23, 258–268. Quay, P., Stutsman, J., Wilbur, D., Snover, A., Dlugokencky, E., Brown, T., 1999. The isotopic composition of atmospheric methane. Glob. Biogeochem. Cycles 13, 445–461. Quigley, D.C., Hornafius, J.S., Luyendyk, B.P., Francis, R.D., Clark, J., Washburn, L., 1999. Decrease in natural marine hydrocarbon seepage near Coal Oil Point, California, associated with offshore oil production. Geology 27, 1047–1050. Revil, A., 2002. Genesis of mud volcanoes in sedimentary basins: a solitary wavebased mechanism. Geophys. Res. Lett. 29, 12. doi:10.1029/2001GL014465. Schaefer, H., Whiticar, M.J., Brook, E.J., Petrenko, V.V., Ferretti, D.F., Severinghaus, J.P., 2006. Ice record of d13C for atmospheric CH4 across the Younger Dryas–Preboreal transition. Science 313, 1109–1112. Sowers, T.A., 2000. The δ13C of atmospheric CH4 over the past 30,000 years as recorded in the Taylor Dome ice core. Eos Trans. AGU 81 (48) (Fall Meet. Suppl., Abstract A62A-04, 2000). Sowers, T., 2006. Late Quaternary atmospheric CH4 isotope record suggests marine clathrates are stable. Science 311, 838–840. Stewart, I., Sauber, J., Rose, J., 2000. Glacio-seismotectonics: ice sheets, crustal deformation and seismicity. Quat. Sci. Rev. 19, 1367–1389. Svensen, H., Planke, S., Jamtveit, B., Pedersen, T., 2003. Seep carbonate formation controlled by hydrothermal vent complexes: a case study from the Vøring volcanic basin, the Norwegian Sea. Geo Mar. Lett. 23, 351–358. Svensen, H., Planke, S., Malthe-Sørenssen, A., Jamtveit, B., Myklebust, R., Eidem, T., Rey, S.S., 2004. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429, 542–545. Taviani, M., 2001. Fluid venting and associated processes. In: Vai, G.B., Martini, I.P. (Eds.), Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins. KluwerAcademic, Dordrecht, pp. 351–366. Terzi, C., Aharon, P., Ricci Lucchi, F., Vai, G.B., 1994. Petrography and stable isotope aspects of cold-vent activity imprinted on Miocene-age ‘calcari a Lucina’ from Tuscana and Romagna Apennines, Italy. Geo Mar. Lett. 14, 177–184. Thompson, A.M., Chappellaz, J.A., Fung, I.Y., Kucsera, T.L., 1993. The atmospheric CH4 increase since the Last Glacial Maximum (2). Interactions with oxidants. Tellus 45B, 242–257. Torgersen, T., O'Donnell, J., 1991. The degassing flux from the solid earth: release by fracturing. Geophys. Res. Lett. 18 (5), 951–954. Torres, M.E., Mix, A.C., Kinports, K., Haley, B., Klinkhammer, G.P., McManus, J., de Angelis, M.A., 2003. Is methane venting at the seafloor recorded by d13C of benthic foraminifera shells? Paleoceanography 18 (3), 1062. doi:10.1029/2002PA000824. Tyler, S.C.,Ajie,H.O.,Gupta,M.L., Cicerone,R.J.,Blacke,D.R.,Dlugokencky, E. J., 1999. Carbon isotopic composition of atmospheric methane: a comparison of surface level and upper tropospheric air. J. Geophys. Res. 104, 13,895–13,910. Valentine, D.L., Blanton, D.C., Reeburgh, W.S., Kastner, M., 2001. Water column methane oxidation adjacent to an area of active hydrate dissociation, Eel river Basin. Geochim. Cosmochim. Acta 65, 2633–2640. Wu, P., Johnston, P., Lambeck, K., 1999. Postglacial rebound and fault instability in Fennoscandia. Geophys. J. Int. 139, 657–670. Wuebbles, D.J., Hayhoe, K., 2002. Atmospheric methane and global change. Earth-Sci. Rev. 57, 177–210. Yusifov, M., Rabinowitz, P.D., 2004. Classification of mud volcanoes in the South Caspian Basin, offshore Azerbaijan. Mar. Pet. Geol. 21, 965–975.en
dc.description.obiettivoSpecifico3.8. Geofisica per l'ambienteen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorEtiope, G.en
dc.contributor.authorMilkov, A. V.en
dc.contributor.authorDerbyshire, E.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentBP America Exploration and Production Technology Group, Houston, Texas, USAen
dc.contributor.departmentCentre for Quaternary Research, Royal Holloway, University of London, UKen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptCentre for Quaternary Research, Royal Holloway, University of London, UK-
crisitem.author.orcid0000-0001-8614-4221-
crisitem.author.orcid0000-0002-1082-4674-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Eti-Mil-Der-GPC-2008.pdf703.61 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 10

33
checked on Feb 10, 2021

Page view(s) 20

315
checked on Apr 24, 2024

Download(s)

46
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric