Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/383
DC FieldValueLanguage
dc.contributor.authorallFinizola, A.; Laboratoire Magmas et Volcans, Université Blaise Pascal et CNRS,en
dc.contributor.authorallLénat, J. F.; Laboratoire Magmas et Volcans, Université Blaise Pascal et CNRS,en
dc.contributor.authorallMacedo, O.; Instituto Geofisico del Peru, Perùen
dc.contributor.authorallRamos, D.; Instituto Geofisico del Peru, Perùen
dc.contributor.authorallThouret, J.-C.; Laboratoire Magmas et Volcans, Université Blaise Pascal et CNRS,en
dc.contributor.authorallSortino, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.date.accessioned2005-09-05T13:07:29Zen
dc.date.available2005-09-05T13:07:29Zen
dc.date.issued2004en
dc.identifier.urihttp://hdl.handle.net/2122/383en
dc.description.abstractOne of the seven potentially active andesite stratovolcanoes in southern Peru, Misti (5822 m), located 17 km northeast and 3.5 km above Arequipa, represents a major threat to the population (f900,000 inhabitants). Our recent geophysical and geochemical research comprises an extensive self-potential (SP) data set, an audioâ magnetotelluric (AMT) profile across the volcano and CO2 concentrations in the soil along a radial profile. The SP survey is the first of its kind in providing a complete mapping of a large andesitic stratovolcano 20 km in diameter. The SP mapping enables us to analyze the SP signature associated with a subduction-related active volcano. The general SP pattern of Misti is similar to that of most volcanoes with a hydrogeologic zone in the lower flanks and a hydrothermal zone in the upper central area. A quasi-systematic relationship exists between SP and elevation. Zones with constant SP/altitude gradients (Ce) are observed in both hydrogeologic (negative Ce) and hydrothermal (positive Ce) zones. Transition zones between the different Ce zones, which form a concentric pattern around the summit, have been interpreted in terms of lateral heterogeneities in the lithology. The highest amplitudes of SP anomalies seem to coincide with highly resistive zones. The hydrothermal system 6 km in diameter, which extends over an area much larger than the summit caldera, may be constrained by an older, concealed collapse caldera. A sealed zone has apparently developed through alteration in the hydrothermal system, blocking the migration of CO2 upward. Significant CO2 emanations are thus observed on the lower flanks but are absent above the hydrothermal zone.en
dc.description.sponsorship- Institut de Recherche pour le Developpement (IRD) - Instituto Geofısico del Peru´ (IGP)en
dc.format.extent539 bytesen
dc.format.extent1573969 bytesen
dc.format.mimetypetext/htmlen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofJournal of Volcanology and Geothermal Researchen
dc.relation.ispartofseries135(2004)en
dc.subjectMisti volcanoen
dc.subjectself-potentialen
dc.subjectaudioâ magnetotelluricen
dc.subjectelectrical resistivityen
dc.subjectstructural discontinuityen
dc.subjecthydrothermal systemen
dc.subjectPeruen
dc.titleFluid circulation and structural discontinuities inside Misti volcano (Peru) inferred from self-potential measurementsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber343-360en
dc.identifier.URLhttp://www.sciencedirect.com/en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniquesen
dc.identifier.doi10.1016/j.jvolgeores.2004.03.009en
dc.relation.referencesAubert, M., Dana, I., 1994. Interpretation of the self-potential radial profiles in volcanology: possibilities of the SP method for the monitoring of the active volcanoes. Bull. Soc. Geol. Fr. 2, 113â 122. Aubert, M., Kieffer, G., 1984. Evolution dâ une intrusion magmatique dans le flanc sud de lâ Etna entre juin 1982 et juin 1983. Résultats de potentiel spontané (PS) et essai dâ interprétation de lâ éruption de 1983. C. R. Acad. Sci. Paris t.296 (Série II-8), 379â 382. Aubert, M., Dana, I.N., Livet, M., 1990. Vérification de limites de nappes aquiféres en terrain volcanique par la méthode de polarisation spontanée. C. R. Acad. Sci., Paris 311 (II),999â 1004. Aubert, M., Dana, I.N., Gourgaud, A., 2000. Internal structure of the Merapi summit from self-potential measurements. J. Volcanol. Geotherm. Res. 100, 337â 343. Avena, M.J., De Pauli, C.P., 1996. Modeling the interfacial properties of an amorphous aluminosilicate dispersed in aqueous NaCl solutions. Colloids Surf. 118, 75â 87. Boubekraoui, S., Courteaud, M., Aubert, M., Albouy, Y., Coudray, J., 1998. New insights into the hydrogeology of a basaltic shield volcano from a comparison between self-potential and electromagnetic data: Piton de la Fournaise, Indian Ocean. J. Appl. Geophys. 40, 165â 177. Bullard, F.M., 1962. Volcanoes of southern Peru. Bull. Volcanol. 24, 443â 453. Corwin, R.F., Hoover, D.B., 1979. The self-potential method in geothermal exploration. Geophysics 44-2, 226â 245. de Silva, S.L., Francis, P.W., 1990. Active and potentially active volcanoes of southern Peru: observations using Landsat Thematic Mapper and space shuttle imagery. Bull. Volcanol. 52, 286â 301. Di Maio, R., Mauriello, P., Patella, D., Petrillo, Z., Piscitelli, S., Siniscalchi, A., 1998. Electric and electromagnetic outline of the Mount Sommaâ Vesuvius structural setting. J. Volcanol. Geotherm. Res. 82, 219â 238. Dobrin, M.B., Savit, C.H., 1988. Introduction to Geophysical Prospecting. McGraw-Hill Book, New York. 867 pp. Finizola, A., Sortino, F., Lénat, J.-F., Valenza, M., 2002. Fluid circulation at Stromboli volcano, (Aeolian Islands, Italy) from self-potential and soil gas surveys. J. Volcanol. Geotherm. Res. 116 (1â 2), 1â 18. Fournier, C., Méthodes géoélectriques appliqués a` lâ hydrogéologie en région volcanique (ChaÄ±Ë ne des Puys, Massif Central franc ais). Développement de la méthode des potentiels spontanés en hydrogéologie. PhD thesis. Univ. Montpellier. Guichet, X., Zuddas, P., 2003. Effect of secondary minerals on electrokinetic phenomena during waterâ rock interaction. Geophys. Res. Lett. 30 (13), 1714 (doi: 10.1029/2003GL017480). Guichet, X., Jouniaux, L., Pozzi, J.-P., 2003. Streaming potential of a sand column in partial saturation conditions. J. Geophys. Res. 108 (B3), 2141 (doi:10.1029/2001JB001517). Ishido, T., Mizutani, H., 1981. Experimental and theoretical basis of electrokinetic phenomena in rockâ water systems and its applications to geophysics. J. Geophys. Res. 86, 1763â 1775. Jackson, D.B., Kauahikaua, J., 1987. Regional self-potential anomalies at Kilauea volcano. Volcanism in Hawaii. USGS Professional paper, vol. 1350, pp. 947â 959. Chap. 40. Jouniaux, L., Bernard, M.L., Zamora, M., Pozzi, J.P., 2000. Streaming potential in volcanic rocks from Mount Pelée. J. Geophys. Res. 105 (4), 8391â 8401. Lénat, J.F., 1987. Structure et dynamique interne dâ un volcan basal-tique intraplaque océanique: Le Piton de la Fournaise (Ä±Ë le de la Réunion). Thése de doctorat e´s sciences. Univ. Blaise Pascal, Clermont-Ferrand. France. Lénat, J.F., Robineau, B., Durand, S., Bachélery, P., 1998. Etude de la zone sommitale du volcan Karthala (Grande Comore) par polarisation spontanée. C. R. Acad. Sci. 327, 781â 788. Lorne, B., Perrier, F., Avouac, J.P., 1999a. Streaming potential measurements: 1. Properties of the electrical double layer from crushed rock samples. J. Geophys. Res. 104, 17857â 17877. Lorne, B., Perrier, F., Avouac, J.P., 1999b. Streaming potential measurements: 2. Relationship between electrical and hydraulic flow patterns from rock samples during deformation. J. Geophys. Res. 104, 17879â 17896. Malengreau, B., Lénat, J.F., Bonneville, A., 1994. Cartographie et surveillance temporelle des anomalies de Polarisation Spontanée (PS) sur le Piton de la Fournaise. Bull. Soc. Géol. Fr. 165 (3), 221â 232. Matsushima, N., Michiwaki, M., Okazaki, N., Ichikawa, N., Takagi, A., Nishida, Y., Mori, H.Y., 1990. Self-potential study in volcanic areasâ Usu, Hokkaido Komaga-take and Me-akan. J. Fac. Sci., Hakkaido Univ., Ser. VII (Geophysics) 8 (5), 465â 477. Merle, O., Vidal, N., Van Wyk de Vries, B., 2001. Experiments on vertical basement fault reactivation below volcanoes. J. Geophys. Res. 106 (B2), 2153â 2162. Michel, S., Zlotnicki, J., 1998. Self-potential and magnetic surveying of La Fournaise Volcano (Reunion Island): correlations with faulting, fluid circulation, and eruption. J. Geophys. Res., B 103 (8), 17845â 17857. Nishida, Y., Tomiya, H., 1987. Self-potential studies in volcanic areasâ Usu volcano. J. Fac. Sci., Hokkaido Univ., Ser. VII Geophysics 8-2, 173â 190. Pengra, D.B., Li, S.X., Wong, P.-Z., 1999. Determination of rock properties by low-frequency AC electrokinetics. J. Geophys. Res. 104, 29485â 29508. Pride, S.R., 1994. Governing equations for the coupled electromagnetics and acoustics of porous media. Phys. Rev. B 50, 15678â 15696. Pride, S.R., Morgan, F.D., 1991. Electrokinetic dissipation induced by seismic waves. Geophysics 56, 914â 925. Revil, A., Leroy, P., 2001. Hydroelectric coupling in a clayey material. Geophys. Res. Lett. 28, 1643â 1646. Revil, A., Pezard, P.A., Glover, P.W.J., 1999a. Streaming potential in porous media: 1. Theory of the zeta potential. J. Geophys. Res. 104, 20021â 20031. Revil, A., Schwaeger, H., Cathles, L.M., Manhardt, P.D., 1999b. Streaming potential in porous media: 2. Theory and application to geothermal systems. J. Geophys. Res. 104, 20033â 20048. Revil, A., Hermitte, D., Spangenberg, E., Cocheme, J.J., 2002. Electrical properties of zeolitized volcaniclastic materials. J. Geophys. Res., B, Solid Earth Planet. 107 (8), 2168â 2184. (doi:10.1029/2001JB000599) Revil, A., Hermitte, D., Voltz, M., Moussa, R., Lacas, J.-G., Bourrié, G., Trolard, F., 2002b. Self-potential signals associated with variations of the hydraulic head during an infiltration experiment. Geophys. Res. Lett. 29. Revil, A., Naudet, V., Nouzaret, J., Pessel, M., 2003. Principles of electrography applied to self-potential electrokinetic sources and hydrogeological applications. Water Resour. Res. 36 (5), 3-1â 3-15. Sasai, Y., Zlotnicki, J., Nishida, Y., Yvetot, P., Morat, P., Hurukami, H., Tanaka, Y., Ishikawa, Y., Koyama, S., Sekigushi, W., 1997. Electromagnetic monitoring of Miyake-jima volcano, Izu-Bonin Arc, Japan: a preliminary report. J. Geomagn. Geoelectr. 49, 1293â 1316. Thouret, J.C., Finizola, A., Fornari, M., Legeley-Padovani, A., Suni, J., Frechen, M., 2001. Geology of El Misti volcano near the city of Arequipa, Peru. Geol. Soc. Amer. Bull. 113,12, 1593â 1610. Trique, M., Richon, P., Perrier, F., Avouac, J.P., Sabroux, J.C., 1999. Radon emanation and electrical potential variations associated with transient deformation near reservoir lakes. Nature 399, 137â 141. Vozoff, K., 1991. The magnetotelluric method. In: Nabighian, M.N. (Ed.), Electromagnetic Methods in Applied Geophysics. Soc. Explor. Geophys., Tulsa, OK, pp. 641â 711. Williams-Jones, G., Stix, J., Heiligmann, M., Charland, A., Sherwood Lollar, B., Arner, N., Garzon, G., Barquero, J., Fernandez, E., 2000. A model of diffuse degassing at three subductionrelated volcanoes. Bull. Volcanol. 62, 130â 142. Zablocki, C.J., 1976. Mapping thermal anomalies on an active volcano by the self-potential method, Kilauea, Hawaii. Proceedings, 2nd U.N. Symposium of the Development and Use of Geothermal Resources, San Francisco, California, May 1975, vol. 2. U.S. Govt. Printing Office, Washington, DC, pp. 1299â 1309. Zablocki, C.J., 1978. Streaming potentials resulting from the descent of meteoric water: a possible source mechanism for Kilauean self-potential anomalies. Geothermal energy: a novelty becomes resource. Geotherm. Resour. Counc., Davis, Calif. United States (USA), Hilo, Hawaii, United States, 747â 748. Zlotnicki, J., Boubon, G., Viodé, J.P., Delarue, J.F., Mille, A., Brue´re, F., 1998. Hydrothermal circulation beneath Mount Pelée inferred by self potential surveying. Structural and tectonic implications. J. Volcanol. Geotherm. Res. 84, 73â 91.en
dc.description.fulltextpartially_openen
dc.contributor.authorFinizola, A.en
dc.contributor.authorLénat, J. F.en
dc.contributor.authorMacedo, O.en
dc.contributor.authorRamos, D.en
dc.contributor.authorThouret, J.-C.en
dc.contributor.authorSortino, F.en
dc.contributor.departmentLaboratoire Magmas et Volcans, Université Blaise Pascal et CNRS,en
dc.contributor.departmentLaboratoire Magmas et Volcans, Université Blaise Pascal et CNRS,en
dc.contributor.departmentInstituto Geofisico del Peru, Perùen
dc.contributor.departmentInstituto Geofisico del Peru, Perùen
dc.contributor.departmentLaboratoire Magmas et Volcans, Université Blaise Pascal et CNRS,en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptLaboratoire Magmas et Volcans, OPGC, Université Blaise Pascal, CNRS,-
crisitem.author.deptInstituto Geofisico del Peru, Perù-
crisitem.author.deptInstituto Geofisico del Peru, Perù-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.orcid0000-0002-5083-7349-
crisitem.author.orcid0000-0002-2400-911X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Finizola JVGR 2004.pdfMain article1.54 MBAdobe PDF
Redirect Elsevier.htmlRedirect-Elsevier539 BHTMLView/Open
Show simple item record

WEB OF SCIENCETM
Citations

69
checked on Feb 10, 2021

Page view(s) 50

219
checked on Apr 20, 2024

Download(s)

83
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric