Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3818
DC FieldValueLanguage
dc.contributor.authorallDe Cetlogon, G.; Centre d’Etude Terrestre et Planétaire, IUT de Vélizy, Vélizy, Franceen
dc.contributor.authorallFrankignoul, C.; Laboratoire d’Océanographie Dynamique et de Climatologie, Université Pierre et Marie Curie, Paris, Franceen
dc.contributor.authorallBentsen, M.; Nansen Environmental and Remote Sensing Center, Bergen, Norwayen
dc.contributor.authorallDelon, C.; Laboratoire d’Aérologie, Observatoire Midi Pyrénées, Toulouse, Franceen
dc.contributor.authorallHaak, H.; Max Planck Institute for Meteorology, Hamburg, Germanyen
dc.contributor.authorallMasina, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallPardaens, A.; Hadley Centre for Climate Prediction and Research, Met Office, Exeter, United Kingdomen
dc.date.accessioned2008-04-21T11:45:49Zen
dc.date.available2008-04-21T11:45:49Zen
dc.date.issued2006-11en
dc.identifier.urihttp://hdl.handle.net/2122/3818en
dc.description.abstractFive non-eddy-resolving oceanic general circulation models driven by atmospheric fluxes derived from the NCEP reanalysis are used to investigate the link between the Gulf Stream (GS) variability, the atmospheric circulation, and the Atlantic meridional overturning circulation (AMOC). Despite the limited model resolution, the temperature at the 200-m depth along the mean GS axis behaves similarly in most models to that observed, and it is also well correlated with the North Atlantic Oscillation (NAO), indicating that a northward (southward) GS shift lags a positive (negative) NAO phase by 0–2 yr. The northward shift is accompanied by an increase in the GS transport, and conversely the southward shift with a decrease in the GS transport. Two dominant time scales appear in the response of the GS transport to the NAO forcing: a fast time scale (less than 1 month) for the barotropic component, and a slower one (about 2 yr) for the baroclinic component. In addition, the two components are weakly coupled. The GS response seems broadly consistent with a linear adjustment to the changes in the wind stress curl, and evidence for baroclinic Rossby wave propagation is found in the southern part of the subtropical gyre. However, the GS shifts are also affected by basin-scale changes in the oceanic conditions, and they are well correlated in most models with the changes in the AMOC. A larger AMOC is found when the GS is stronger and displaced northward, and a higher correlation is found when the observed changes of the GS position are used in the comparison. The relation between the GS and the AMOC could be explained by the inherent coupling between the thermohaline and the wind-driven circulation, or by the NAO variability driving them on similar time scales in the models.en
dc.description.sponsorshipThis research was supported by the PREDICATE project of the European Community, and for M. Bentsen by the Research Council of Norway through RegClim, NOClim, and the Programme of Supercomputing.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Meteorological Societyen
dc.relation.ispartofJournal of Physical Oceanographyen
dc.relation.ispartofseries11/36(2006)en
dc.subjectocean modellingen
dc.subjectgulf stream variabilityen
dc.titleGulf Stream Variability in Five Oceanic General Circulation Modelsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber2119–2135en
dc.identifier.URLhttp://ams.allenpress.com/perlserv/?request=res-loc&uri=urn%3Aap%3Apdf%3Adoi%3A10.1175%2FJPO2963.1en
dc.subject.INGV03. Hydrosphere::03.01. General::03.01.03. Global climate modelsen
dc.identifier.doi10.1175/JPO2963.1en
dc.relation.referencesAnderson, D. L. T., and A. E. Gill, 1975: Spin-up of a stratified ocean, with applications to upwelling. Deep-Sea Res., 22, 583– 586. Bentsen, M., H. Drange, T. Furevik, and T. Zhou, 2004: Simulated variability of the Atlantic meridional overturning circulation. Climate Dyn., 22, 701–720. Bleck, R., C. Rooth, D. Hu, and L. T. Smith, 1992: Salinity-driven thermohaline transients in a wind- and thermohaline-forced isopycnic coordinate model of the North Atlantic. J. Phys. Oceanogr., 22, 1486–1515. Bretherton, C.-S., C. Smith, and J.-M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541–560. Cane, M. A., V. Kamenkovich, and A. Krupitsky, 1998: On the utility and disutility of JEBAR. J. Phys. Oceanogr., 28, 519– 526. Cessi, P., 1990: Recirculation and separation of boundary currents. J. Mar. Res., 48, 1–35. Chelton, D. B., R. A. deSzoeke, M. G. Schlax, K. El Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433–460. Cox, M. D., 1985: An eddy resolving numerical model of the ventilated thermocline. J. Phys. Oceanogr., 15, 1312–1324. Curry, R. G., and M. McCartney, 2001: Ocean gyre circulation changes associated with the North Atlantic Oscillation. J. Phys. Oceanogr., 31, 3374–3400. Dewar, W. K., 2003: Nonlinear midlatitude ocean adjustment. J. Phys. Oceanogr., 33, 1057–1082. Eden, C., and T. Jung, 2001: North Atlantic interdecadal variability: Oceanic response to the North Atlantic Oscillation (1865–1997). J. Climate, 14, 676–691. ——, and J. Willebrand, 2001: Mechanisms of interannual to decadal variability in the North Atlantic circulation. J. Climate, 14, 2266–2280. Ezer, T., and G. L. Mellor, 1992: A numerical study of the variability and the separation of the Gulf Stream induced by surface atmospheric forcing and lateral boundary flow. J. Phys. Oceanogr., 22, 660–682. ——, ——, and R. J. Greatbach, 1995: On the interpentadal variability of the North Atlantic Ocean: Model simulated changes in transport, meridional heat flux and coastal sea level between 1955–1959 and 1970–1974. J. Geophys. Res., 100, 10 559–10 566. Frankignoul, C., G. de Coëtlogon, T. M. Joyce, and S. Dong, 2001: Gulf Stream variability and ocean–atmosphere interactions. J. Phys. Oceanogr., 31, 3516–3529. Fu, L.-L., and B. Qiu, 2002: Low-frequency variability of the North Pacific Ocean: The roles of boundary- and wind-driven baroclinic Rossby waves. J. Geophys. Res., 107, 3220, doi:10.1029/2001JC001131. Gangopadhyay, A., P. Cornillon, and D. R. Watts, 1992: A test of the Parsons–Veronis hypothesis on the separation of the Gulf-Stream. J. Phys. Oceanogr., 22, 1286–1301. Gerdes, R., and C. Köberle, 1995: On the influence of DSOW in a numerical model of the North Atlantic general circulation. J. Phys. Oceanogr., 25, 2624–2642. ——, A. Biastoch, and R. Redler, 2001: Salt balance of the Gulf Stream in a regional model: Implications for climate variability. Climate Dyn., 18 (1/2), 17–27. Gordon, C., C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell, and R. A. Wood, 2000: The simulations of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16, 147–168. Greatbach, R. J., A. F. Fanning, A. D. Goulding, and S. Levitus, 1991: A diagnosis of interpentadal circulation changes in the North Atlantic. J. Geophys. Res., 96, 22 009–22 023. Haak, H., J. Jungclaus, U. Mikolajewicz, and M. Latif, 2003: Formation and propagation of great salinity anomalies. Geophys. Res. Lett., 30, 1473, doi:10.1029/2003GL017065. Holland, W. R., and A. D. Hirschman, 1972: A numerical calculation of the circulation in the North Atlantic Ocean. J. Phys. Oceanogr., 2, 336–354. Jiang, S., F.-F. Jin, and M. Ghil, 1995: Multiple equilibria, periodic, and aperiodic solutions in a wind-driven, double-gyre, shallow-water model. J. Phys. Oceanogr., 25, 764–786.Joyce, T. M., C. Deser, and M. Spall, 2000: The relation between decadal variability of subtropical mode water and the North Atlantic Oscillation. J. Climate, 13, 2550–2569. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–471. Kelly, K., 1991: The meandering Gulf Stream as seen by the Geosat altimeter: Surface transport, position and velocity variance from 73° to 46°W. J. Geophys. Res., 96, 16 721–16 738. Kelly, K. A., and S. T. Gille, 1990: Gulf Stream surface transport and statistics at 69°W from the Geosat altimeter. J. Geophys. Res., 95, 3149–3161. Latif, M., and Coauthors, 2004: Reconstructing, monitoring, and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature. J. Climate, 17, 1605–1614. Levitus, S., 1994: World Ocean Atlas 1994. National Oceanographic Data Center Informal Rep. 13, CD-ROM. Madec, G., P. Delecluse, M. Imbard, and C. Lévy, 1998: OPA8.1 ocean general circulation model reference manual. Notes du pôle de modélisation IPSL 11, 91 pp. Marsland, S. J., H. Haak, J. H. Jungclaus, M. Latif, and F. Röske, 2003: The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modell., 5, 91–127. Masina, S., P. Di Pietro, and A. Navarra, 2004: Interannual-todecadal variability of the North Atlantic from an ocean data assimilation system. Climate Dyn., 23, 531–536. Nurser, A. J. G., and R. G. Williams, 1990: Cooling Parsons’ model of the separated Gulf Stream. J. Phys. Oceanogr., 20, 1974–1979. Osychny, V., and P. Cornillon, 2004: Properties of Rossby waves in the North Atlantic estimated from satellite data. J. Phys. Oceanogr., 34, 61–76. Parsons, A. T., 1969: A two-layer model of Gulf Stream separation. J. Fluid Mech., 39, 511–528. Penduff, T., B. Barnier, W. Dewar, and J. O’Brien, 2004: Dynamical response of the oceanic eddy field to the North Atlantic Oscillation: A model–data comparison. J. Phys. Oceanogr., 34, 2615–2629. Rossby, H. T., and T. Rago, 1985: Hydrographic evidence for seasonal and secular change in the Gulf Stream. IOC Tech. Rep. 30, 25–28. Sato, O., and T. Rossby, 1995: Seasonal and low frequency variations in dynamic height anomaly and transport of the Gulf Stream. Deep-Sea Res., 42, 149–164. Sirven, J., 2005: Response of the separated western boundary current to harmonic and stochastic wind stress variations in a 1.5-layer ocean model. J. Phys. Oceanogr., 35, 1341–1358. Spall, M. A., 1996: Dynamics of the Gulf Stream/deep western boundary currents crossover. Part II: Low frequency internal oscillations. J. Phys. Oceanogr., 26, 2152–2168. Taguchi, B., S. P. Xie, H. Mitsudera, and A. Kubokawa, 2005: Response of the Kuroshio Extension to Rossby waves associated with the 1970s climate regime shift in a high-resolution ocean model. J. Climate, 18, 2979–2995. Taylor, A. H., and J. A. Stephens, 1998: The North Atlantic Oscillation and the latitude of the Gulf Stream. Tellus, 50A, 134–142. ——, and A. Gangopadhyay, 2001: A simple model of interannual displacements of the Gulf Stream. J. Geophys. Res., 106, 13 849–13 860. Thompson, J. D., and W. J. Schmitz, 1989: A limited area model of the Gulf Stream: Design, initial experiments and modeldata intercomparison. J. Phys. Oceanogr., 19, 791–814. Tracey, K. L., and D. R. Watts, 1986: The Gulf Stream dynamics experiment: Inverted echo sounder data report for the April 1983 to June 1984 deployment period. University of Rhode Island GSO Tech. Rep. 86-4, 236 pp. Veronis, G., 1973: Model of the World Ocean circulation: I. winddriven, two layer. J. Mar. Res., 31, 228–288. von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 494 pp. Zlotnicki, V., 1991: Sea level differences across the Gulf Stream and Kuroshio Extension. J. Phys. Oceanogr., 21, 599–609.en
dc.description.obiettivoSpecifico3.7. Dinamica del clima e dell'oceanoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorDe Cetlogon, G.en
dc.contributor.authorFrankignoul, C.en
dc.contributor.authorBentsen, M.en
dc.contributor.authorDelon, C.en
dc.contributor.authorHaak, H.en
dc.contributor.authorMasina, S.en
dc.contributor.authorPardaens, A.en
dc.contributor.departmentCentre d’Etude Terrestre et Planétaire, IUT de Vélizy, Vélizy, Franceen
dc.contributor.departmentLaboratoire d’Océanographie Dynamique et de Climatologie, Université Pierre et Marie Curie, Paris, Franceen
dc.contributor.departmentNansen Environmental and Remote Sensing Center, Bergen, Norwayen
dc.contributor.departmentLaboratoire d’Aérologie, Observatoire Midi Pyrénées, Toulouse, Franceen
dc.contributor.departmentMax Planck Institute for Meteorology, Hamburg, Germanyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentHadley Centre for Climate Prediction and Research, Met Office, Exeter, United Kingdomen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptCentre d’Etude Terrestre et Planétaire, IUT de Vélizy, Vélizy, France-
crisitem.author.deptUni Res Ltd, Uni Climate, Bergen, Norway-
crisitem.author.deptLaboratoire d’Aérologie, Observatoire Midi Pyrénées, Toulouse, France-
crisitem.author.deptMax Planck Institute for Meteorology, Hamburg, Germany-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptHadley Centre for Climate Prediction and Research, Met Office, Exeter, United Kingdom-
crisitem.author.orcid0000-0001-6273-7065-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Gulf_stream.pdfMain article3.61 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 10

47
checked on Feb 10, 2021

Page view(s)

144
checked on Apr 24, 2024

Download(s)

21
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric