Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3815
DC FieldValueLanguage
dc.contributor.authorallBellucci, A.; Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna, Italyen
dc.contributor.authorallMasina, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallDi Pietro, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallNavarra, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.date.accessioned2008-04-21T10:20:04Zen
dc.date.available2008-04-21T10:20:04Zen
dc.date.issued2007-11en
dc.identifier.urihttp://hdl.handle.net/2122/3815en
dc.description.abstractIn this paper results from the application of an ocean data assimilation (ODA) system, combining a multivariate reduced-order optimal interpolator (OI) scheme with a global ocean general circulation model (OGCM), are described. The present ODA system, designed to assimilate in situ temperature and salinity observations, has been used to produce ocean reanalyses for the 1962–2001 period. The impact of assimilating observed hydrographic data on the ocean mean state and temporal variability is evaluated. A special focus of this work is on the ODA system skill in reproducing a realistic ocean salinity state. Results from a hierarchy of different salinity reanalyses, using varying combinations of assimilated data and background error covariance structures, are described. The impact of the space and time resolution of the background error covariance parameterization on salinity is addressed.en
dc.description.sponsorshipThis work has been funded by the ENACT Project (Contract EVK2-CT2001-00117) for A. Bellucci and P. Di Pietro, and partially by the ENSEMBLES Project (Contract GOCE-CT-2003-505539) for A. Bellucci.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Meteorological Societyen
dc.relation.ispartofMonthly Weather Reviewen
dc.relation.ispartofseries11/135 (2007)en
dc.subjectocean modellingen
dc.subjectdata assimilationen
dc.subjectreanalysisen
dc.subjectupper ocean variabilityen
dc.subjecttemperatureen
dc.subjectSalinityen
dc.titleUsing Temperature–Salinity Relations in a Global Ocean Implementation of a Multivariate Data Assimilation Schemeen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber3785-3807en
dc.identifier.URLhttp://ams.allenpress.com/perlserv/?request=get-abstract&doi=10.1175%2F2007MWR1821.1&ct=1en
dc.subject.INGV03. Hydrosphere::03.01. General::03.01.04. Ocean data assimilation and reanalysisen
dc.identifier.doi10.1175/2007MWR1821.1en
dc.relation.referencesAlves, O., M. Alonso-Balmaseda, D. L. T. Anderson, and T. Stockdale, 2004: Sensitivity of dynamical seasonal forecasts to ocean initial conditions. Quart. J. Roy. Meteor. Soc., 130, 647–668. Bell, M. J., M. J. Martin, and N. K. Nichols, 2004: Assimilation of data into an ocean model with systematic errors near the equator. Quart. J. Roy. Meteor. Soc., 130, 873–893. Blanke, B., and P. Delecluse, 1993: Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed layer physics. J. Phys. Oceanogr., 23, 1363–1388. Burgers, G., M. A. Balmaseda, F. C. Vossepoel, G. J. van Oldenborgh, and P. J. Van Leeuwen, 2002: Balanced ocean data assimilation near the equator. J. Phys. Oceanogr., 32, 2509–2519. Carton, J. A., G. Chepurin, X. Cao, and B. Giese, 2000: A simple ocean data assimilation analysis of the upper ocean, 1950–95. Part I: Methodology. J. Phys. Oceanogr., 30, 294–309. Daley, R., 1991: Atmospheric Data Analysis. Cambridge University Press, 457 pp. Davey, M., and ENACT Partnership, 2006: Multimodel multimethod multi-decadal ocean analyses from the ENACT project. Exchanges, 38, 22–25. De Mey, P., and A. Robinson, 1987: Assimilation of altimeter eddy fields in a limited-area quasi-geostrophic model. J. Phys. Oceanogr., 17, 2280–2293. ——, and M. Benkiran, 2002: A multivariate reduced-order optimal interpolation method and its application to the Mediterranean basin-scale circulation. Ocean Forecasting: Conceptual Basis and Applications, N. Pinardi and J. D. Woods, Eds., Springer Verlag, 281–306. Derber, J., and A. Rosati, 1989: A global oceanic data assimilation system. J. Phys. Oceanogr., 19, 1333–1347. Donguy, J. R., 1994: Surface and subsurface salinity in the tropical Pacific Ocean. Prog. Oceanogr., 34, 45–78. Ducet, N., P. Y. Le Traon, and G. Reverdin, 2000: Global high resolution mapping of ocean circulation from the combination of TOPEX/POSEIDON and ERS-1/2. J. Geophys. Res., 105 (C8), 19 477–19 498. Gent, P., and J. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150–155. Ide, K., P. Courtier, M. Ghil, and A. C. Lorenc, 1997: Unified notation for data assimilation: Operational, sequential and variational. J. Meteor. Soc. Japan, 75, 181–189. Ingleby, B., and M. Huddleston, 2007: Quality control of ocean profiles: Historical and real-time data. J. Mar. Syst., 65, 158– 175. Ji, M., and A. Leetma, 1997: Impact of data assimilation on ocean initialization and El Niño prediction. Mon. Wea. Rev., 125, 742–753. Klemm, D. D., M. J. Bell, R. M. Forbes, and A. Hines, 2000: Assessment of the FOAM global data assimilation system for real-time operational ocean forecasting. J. Mar. Syst., 25, 1–22. Lazar, A., G. Madec, and P. Delecluse, 1999: The deep interior downwelling, the Veronis effect, and mesoscale tracer transport parameterizations in an OGCM. J. Phys. Oceanogr., 29, 2945–2961. Levitus, S., and Coauthors, 1998: World Ocean Database 1998. NOAA Atlas NESDIS 1, 346 pp. Lorenc, A. C., and Coauthors, 2000: The Met. Office global threedimensional variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 126, 2991–3012. Madec, G., P. Delecleuse, M. Imbard, and C. Levy, 1998: OPA, release 8.1: Ocean general circulation model reference manual. LODYC/IPSL Tech. Note 11, Paris, France, 91 pp. Maes, C., 1998: Estimating the influence of salinity on sea level anomaly in the ocean. Geophys. Res. Lett., 25, 3551–3554. ——, D. Behringer, R. W. Reynolds, and M. Ji, 2000: Retrospective analysis of the salinity variability in the western tropical Pacific Ocean using an indirect minimization approach. J. Atmos. Oceanic Technol., 17, 512–524. Masina, S., N. Pinardi, and A. Navarra, 2001: A global ocean temperature and altimeter data assimilation system for studies of climate variability. Climate Dyn., 17, 687–700. ——, P. Di Pietro, and A. Navarra, 2004: Interannual-to-decadal variability of the North Atlantic from an ocean data assimilation system. Climate Dyn., 23, 531–546. McPhaden, M. J., and Coauthors, 1998: The Tropical Ocean- Global Atmosphere observing system: A decade of progress. J. Geophys. Res., 103, 14 169–14 240. Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s spectral statistical analysis system. Mon. Wea. Rev., 120, 1747–1763. Rabier, F., H. Jarvinen, E. Klinker, J. F. Mahfouf, and A. Simmons, 2000: The ECMWF operational implementation of four-dimensional variational assimilation. Part I: Experimental results with simplified physics. Quart. J. Roy. Meteor. Soc., 126, 1143–1170. Reverdin, G., E. Frankignoul, E. Kestenare, and M. J. McPhaden, 1994: Seasonal variability in the surface currents of the equatorial Pacific. J. Geophys. Res., 99, 20 323–20 344. Reynolds, R. W., 1988: A real-time global surface temperature analysis. J. Climate, 1, 75–86. Ricci, S., A. Weaver, J. Vialard, and P. Rogel, 2005: Incorporating state-dependent temperature–salinity constraints in the background error covariance of variational ocean data assimilation. Mon. Wea. Rev., 133, 317–338. Rio, M. H., and F. Hernandez, 2004: A mean dynamic topography computed over the world ocean from altimetry, in situ measurements, and a geoid model. J. Geophys. Res., 109, C12032, doi:10.1029/2003JC002226. Rosati, A., K. Miyakoda, and R. Gudgel, 1997: The impact of ocean initial conditions on ENSO forecasting with a coupled model. Mon. Wea. Rev., 125, 754–772. Segschneider, J., D. L. T. Anderson, J. Vialard, M. Balmaseda, T. N. Stockdale, A. Troccoli, and K. Haines, 2001: Initialization of seasonal forecasts assimilating sea level and temperature observations. J. Climate, 14, 4292–4307. Sparnocchia, S., N. Pinardi, and E. Demirov, 2003: Multivariate empirical orthogonal function analysis of the upper thermocline structure of the Mediterranean Sea from observations and model simulations. Ann. Geophys., 21, 167–187. Talley, L. D., and M. E. Raymer, 1982: Eighteen degree water variability. J. Mar. Res., 40, 757–775. Troccoli, A., and K. Haines, 1999: Use of temperature–salinity relation in a data assimilation context. J. Atmos. Oceanic Technol., 16, 2011–2025. ——, and P. Ka¨ llberg, 2004: Precipitation correction in the ERA- 40 reanalysis. ERA-40 Project Rep. Series 13, 6 pp. ——, and Coauthors, 2002: Salinity adjustments in the presence of temperature data assimilation. Mon. Wea. Rev., 130, 89–102. Uppala, S., and Coauthors, 2005: The ERA-40 reanalysis. Quart. J. Roy. Meteor. Soc., 131, 2961–3012. Vialard, J., A. T. Weaver, D. L. T. Anderson, and P. Delecleuse, 2003: Three- and four-dimensional variational assimilation with a general circulation model of the tropical Pacific Ocean. Part II: Physical validation. Mon. Wea. Rev., 131, 1379–1395. Weaver, A. T., J. Vialard, and D. L. T. Anderson, 2003: Threeand four-dimensional variational assimilation with a general circulation model of the tropical Pacific Ocean. Part I: Formulation, internal diagnostics, and consistency checks. Mon. Wea. Rev., 131, 1360–1378.en
dc.description.obiettivoSpecifico3.7. Dinamica del clima e dell'oceanoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorBellucci, A.en
dc.contributor.authorMasina, S.en
dc.contributor.authorDi Pietro, P.en
dc.contributor.authorNavarra, A.en
dc.contributor.departmentCentro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptCMCC-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptCMCC, Italy-
crisitem.author.orcid0000-0001-6273-7065-
crisitem.author.orcid0000-0002-4068-1256-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
bmdn_MWR07.pdfMain article3.73 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

25
checked on Feb 10, 2021

Page view(s)

196
checked on Apr 17, 2024

Download(s)

23
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric