Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3808
DC FieldValueLanguage
dc.contributor.authorallMurru, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallConsole, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallFalcone, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallMontuori, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallSgroi, T.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.date.accessioned2008-04-21T06:49:53Zen
dc.date.available2008-04-21T06:49:53Zen
dc.date.issued2007en
dc.identifier.urihttp://hdl.handle.net/2122/3808en
dc.description.abstractThe spatial pattern of the b value of the frequency-magnitude relation has been analyzed using gridding techniques beneath Mount Etna, Italy. A regional data set of 2900 events with Md (duration magnitude) 1.5 up to 15 km depth occurring between August 1999 and December 2005 has been used. Two regions with an abnormally high b value have been found, one centered beneath the southern part of the Valle del Bove, above the 6 km below sea level (bsl) deep basement, and the other beneath the summit region 2 km bsl east of the Central Craters. We can infer that these high b value anomalies are regions of increased crack density, and/or high pore pressure, related to the presence of nearby magma storage. This interpretation is supported by all the available geophysical evidence, such as tomographic studies and geodetic deformation measurements. The data set has also been subdivided into five periods, corresponding to different phases of volcanic activity: 2001 preeruption, 2001 eruptive, 2002–2003 preeruption, 2002–2003 eruptive, and 2002–2003 posteruption. The minimum magnitude of completeness, Mc, and the b value were computed for each period. A volume of anomalously high b values can be observed in each of these periods (except for the 2002–2003 preeruption interval). This approach has allowed the detection of the transient presence of magmatic intrusions during the various periods evaluated.en
dc.language.isoEnglishen
dc.publisher.nameAGUen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseries/ 112 (2007)en
dc.subjectb valueen
dc.subjectMount Etnaen
dc.subjectfrequency-magnitude relationen
dc.subjectmagmatic intrusionsen
dc.titleSpatial mapping of the b value at Mount Etna, Italy, using earthquake data recorded from 1999 to 2005en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB12303en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoringen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.identifier.doi10.1029/2006JB004791en
dc.relation.referencesAki, K. (1965), Maximum likelihood estimate of b in the formula log N = a–b M and its confidence limits, Bull. Earthquake Res. Inst. Univ. Tokyo, 43, 237– 239. Allard, P., B. Behncke, S. D’Amico, M. Neri, and S. Gambino (2006), Mount Etna 1993– 2005: Anatomy of an evolving eruptive cycle, Earth Sci. Rev., 78, 85– 114. Aloisi, M., A. Bonaccorso, S. Gambino, M. Mattia, and G. Puglisi (2003), Etna 2002 eruption imaged from continuous tilt and GPS data, Geophys. Res. Lett., 30(23), 2214, doi:10.1029/2003GL018896. Aloisi, M., A. Bonaccorso, and S. Gambino (2006), Imaging composite dike propagation (Etna, 2002 case), J. Geophys. Res., 111, B06404, doi:10.1029/2005JB003908. Andronico, D., et al. (2005), A multi-disciplinary study of the 2002– 03 Etna eruption: Insights into a complex plumbing system, Bull. Volcanol., 67, 314–330. Bonaccorso, A. (1996), Dynamic inversion of ground deformation data for modelling volcanic sources (Etna 1991 – 93), Geophys. Res. Lett., 23, 451–454. Bonaccorso, A., and D. Patane` (2001), Shear response to an intrusive episode at Mt. Etna volcano (January 1998) inferred through seismic and tilt data, Tectonophysics, 334, 61–75. Bonaccorso, A., M. Aloisi, and M. Mattia (2002), Dike emplacement forerunning the Etna July 2001 eruption modeled through continuous tilt and GPS data, Geophys. Res. Lett., 29(13), 1624, doi:10.1029/ 2001GL014397. Bonaccorso, A., S. D’Amico, M. Mattia, and D. Patane` (2004), Intrusive mechanism at Mt. Etna forerunning the July–August 2001 eruption from seismic and ground deformation data, Pure Appl. Geophys., 161, doi:10.1007/s00024-004-2515-4. Bonaccorso, A., A. Bonforte, F. Guglielmino, M. Palano, and G. Puglisi (2006), Composite ground deformation pattern forerunning the 2004– 2005 Mount Etna eruption, J. Geophys. Res., 111, B12207, doi:10.1029/ 2005JB004206. Bonforte, A., and G. Puglisi (2003), Magma uprising and flank dynamics on Mount Etna volcano, studied using GPS data (1994– 1995), J. Geophys. Res., 108(B3), 2153, doi:10.1029/2002JB001845. Bridges, D. L., and S. Gao (2006), Spatial variation of seismic b-values beneath Makushin Volcano, Unalaska Island, Alaska, Earth Planet. Sci. Lett., 245, 408– 415. Burton, M. R., et al. (2005), Etna 2004– 2005: An archetype for geodynamically- controlled effusive eruptions, Geophys. Res. Lett., 32, L09303, doi:10.1029/2005GL022527. Chernick, M. R. (1999), Bootstrap methods: A Practitioner’s Guide, 264 pp., Wiley-Interscience, New York. Chiarabba, C., A. Amato, E. Boschi, and F. Barberi (2000), Recent seismicity and tomographic modeling of the Mount Etna plumbing system, J. Geophys. Res., 105, 10,923–10,938. Chiarabba, C., De P. Gori, and D. Patane` (2004), The Mt. Etna plumbing system: The contribution of seismic tomography, in Mount Etna: Volcano Laboratory, Geophys. Monogr. Ser., vol. 143, edited by A. Bonaccorso et al., pp. 191– 204, AGU, Washington, D. C. Cumin, G. (1947), Dati e considerazioni sulla recente eruzione, ‘‘Vie economiche’’ del 15 Marzo 1947 (in Italian), Catania, Italy. Cucuzza Silvestri, S. (1949), L’eruzione dell’Etna del 1947 (in Italian), Bull. Volcanol., IX, 81 – 111. Frolich, C., and S. Davis (1993), Teleseismic b-values: Or much ado about 1.0, J. Geophys. Res., 98, 631–634. Gambino, S., A. Mostaccio, D. Patane`, L. Scarfıgrave;, and A. Ursino (2004), High-precision locations of the microseismicity preceding the 2002 – 2003 Mt. Etna eruption, Geophys. Res. Lett., 31, L18604, doi:10.1029/2004GL020499. Giampiccolo, E., S. D’Amico, D. Patane`, and S. Gresta (2007), Attenuation and source parameters of Shallow microearthquakes at Mt. Etna volcano, Italy, Bull. Seismol. Soc. Am., 97, 184– 197. Gruppo Analisti Dati Sismici (2007), Terremoti recenti localizzati con la rete sismica della Sicilia Orientale, Ist. Naz. di Geofis. e Vulcanol., Catania, Italy. (Available at http://www.ct.ingv.it/Sismologia/analisti/default.asp) Gutenberg, B., and C. F. Richter (1944), Frequency of earthquakes in California, Bull. Seismol. Soc. Am., 34, 185–188. Hirn, A., A. Nercessian, M. Sapin, F. Ferrucci, and G. Wittlinger (1991), Seismic heterogeneity of Mt. Etna: Structure and activity, Geophys. J. Int., 105, 139–153. Ishimoto, M., and K. Iida (1939), Observations of earthquakes registered with the microseismograph constructed recently, Bull. Earthquake Res. Inst. Tokyo Univ., 17, 443– 478. Lahr, J. C. (1989), HYPOELLIPSE/VERSION 2.0: A computer program for determining local earthquake hypocentral parameters, magnitude, and first motion pattern, U.S. Geol. Surv. Open File Rep., 89– 116, 81 pp. Laigle, M., A. Hirn, M. Sapin, J. C. Lepine, J. Diaz, J. Gallart, and R. Nicolich (2000), Mount Etna dense array local earthquake P and S tomography and implications for volcanic plumbing, J. Geophys. Res., 105, 21,633–21,646. Lo Giudice, E., G. Patane`, R. Rasa`, and R. Romano (1982), The structural framework of Mount Etna, Mem. Soc. Geol. Ital., 23, 125– 158. Lundgren, P., and P. A. Rosen (2003), Source model for the 2001 flank eruption of Mt. Etna volcano, Geophys. Res. Lett., 30(7), 1388, doi:10.1029/2002GL016774. Lundgren, P., P. Berardino, M. Coltelli, G. Fornaro, R. Lanari, G. Puglisi, E. Sansosti, and M. Tesauro (2003), Coupled magma chamber inflation and sector collapse slip observed with synthetic aperture radar interferometry on Mt. sEtna volcano, J. Geophys. Res., 108(B5), 2247, doi:10.1029/2001JB000657. Lundgren, P., F. Casu, M. Manzo, A. Pepe, P. Berardino, E. Sansosti, and R. Lanari (2004), Gravity and magma induced spreading of Mount Etna volcano revealed by satellite radar interferometry, Geophys. Res. Lett., 31, L04602, doi:10.1029/2003GL018736. Massonnet, D., P. Briole, and A. Arnaud (1995), Deflation of Mount Etna monitored by spaceborne radar interferometry, Nature, 375, 567–570, doi:10.1038/375567A0. McGuire, W. J., A. D. Pullen, and S. J. Saunders (1990), Recent dikeinduced large-scale block movement at Mount Etna and potential slope failure, Nature, 343, 357–359. McNutt, S. (2005), Volcanic seismology, Annu. Rev. Earth Planet. Sci., 32, 461– 491. Mogi, K. (1962), Magnitude-frequency relation for elastic shocks accompanying fracture of various materials and some related problems in earthquakes, Bull. Earthquake Res. Inst. Univ. Tokyo, 40, 831– 853. Murray, J. B. (1990), High-level magma transport at Mount Etna volcano, as deduced from ground deformation measurements, in Magma Transport and Storage, edited by M. P. Ryan pp. 357– 383, John Wiley, Chichester, U. K. Murru, M., C. Montuori, M. Wyss, and E. Privitera (1999), The locations of magma chambers at Mt. Etna, Italy, mapped by b values, Geophys. Res. Lett., 26, 2553–2556. Murru, M., C. Montuori, R. Console, and A. Lisi (2005), Mapping of the b value anomalies beneath Mt. Etna, Italy, during July–August 2001 lateral eruption, Geophys. Res. Lett., 32, L05309, doi:10.1029/2004GL021545. Neri, M., V. Acocella, B. Behncke, V. Maiolino, A. Ursino, and R. Velardita (2005), Contrasting triggering mechanisms of the 2001 and 2002– 2003 eruptions of Mount Etna (Italy), J. Volcanol. Geotherm. Res., 144, 235– 255. Newhall, C. G., S. E. Albano, N. Matsumoto, and T. Sandoval (2001), Roles of groundwater in volcanic unrest, J. Geol. Soc. Philos., 56, 69– 84. Ogata, Y., and K. Katsura (1993), Analysis of temporal and spatial heterogeneity of magnitude frequency distribution inferred from earthquake catalogues, Geophys. J. Int., 113, 727– 738. Patane`, D., C. Chiarabba, O. Cocina, P. De Gori, M. Moretti, and E. Boschi (2002), Tomographic images and 3D earthquake locations of the seismic swarm preceding the 2001 Mt. Etna eruption: Evidence for a dyke intrusion, Geophys. Res. Lett., 29(10), 1497, doi:10.1029/2001GL014391. Patane`, D., P. De Gori, C. Chiarabba, and A. Bonaccorso (2003), Magma ascent and the pressurization of Mt. Etna’s volcanic system, Science, 299, 2061– 2063. Patane`, D., M. Mattia, and M. Aloisi (2005), Shallow intrusive processes during 2002– 2004 and current volcanic activity on Mt. Etna, Geophys. Res. Lett., 32, L06302, doi:10.1029/2004GL021773. Patane`, D., G. Barberi, O. Cocina, P. De Gori, and C. Chiarabba (2006), Time-resolved seismic tomography detects magma intrusions at Mount Etna, Science, 313, 821– 823. Puglisi, G., and A. Bonforte (2004), Dynamics of Mount Etna volcano inferred from static and kinematic GPS measurements, J. Geophys. Res., 109, B11404, doi:10.1029/2003JB002878. Puglisi, G., A. Bonforte, and S. R. Maugeri (2001), Ground deformation patterns on Mount Etna, 1992 to 1994, inferred from GPS data, Bull. Volcanol., 62, 371–384. Rierola, M. (2005), Temporal and spatial transients in b-values beneath volcanoes, Diploma thesis, 67 pp., Inst. of Geophys., ETH-Zurich, Zurich. Rydelek, P. A., and I. S. Sacks (1989), Testing the completeness of earthquake catalogs and the hypothesis of self-similarity, Nature, 337, 251– 253. Sanchez, J. J., S. R. McNutt, J. A. Power, and M. Wyss (2004), Spatial variations in the frequency-magnitude distribution of earthquakes at Mount Pinatubo Volcano, Bull. Seismol. Soc. Am., 94, 430–438. Sanchez, J. J., et al. (2005), Spatial mapping of the b-value at Galeras volcano, Colombia, using earthquakes recorded from 1995 to 2002, Earth Sci. Res. J., 9, 30– 36. Scholz, C. H. (1968), The frequency-magnitude relation of micro fracturing in rock and its relation to earthquakes, Bull. Seismol. Soc. Am., 58, 399– 415. Shi, Y., and B. Bolt (1982), The standard error of the magnitude frequency b value, Bull. Seismol. Soc. Am., 72, 1677– 1687. Silvestri, O. (1879), Sulla doppia eruzione scoppiata il 26 Maggio 1879 (in Italian), pp. 1 – 19, Tipografia Galatola Catania, Catania, Italy. Spilliaert, N., P. Allard, N. Me´trich, and A. Sobolev (2006), Conditions of ascent, degassing and eruption of primitive alkali basalt during the powerful 2002 flank eruption of Mount Etna, J. Geophys. Res., 111, B04203. doi:10.1029/2005JB003934. Tusa, G., A. Brancato, and S. Gresta (2006a), Source parameters of microearthquakes in southeastern Sicily (Italy), Bull. Seismol. Soc. Am., 96, 968– 983, doi:10.1785/0120050071. Tusa, G., A. Brancato, S. Gresta, and S. D. Malone (2006b), Source parameters of microearthquakes at Mount St. Helens (USA), Geophys. J. Int., 166, 1193– 1223, doi:10.1111/J-1365-246X.2006.03025.x. Utsu, T. (1992), On seismicity, in Mathematical Seismology (VII), Coop. Res. Rep. 34, pp. 139–157, Inst. for Stat. Math., Tokyo. Warren, N. W., and G. V. Latham (1970), An experimental study of thermally induced microfracturing and its relation to volcanic seismicity, J. Geophys. Res., 75, 4455–4464. Wiemer, S. (2001), A software package to analyze seismicity: ZMAP, Seismol. Res. Lett., 72, 373– 382. Wiemer, S., and J. Benoit (1996), Mapping the b-value anomaly at 100 km depth in Alaska and New Zealand subduction zones, Geophys. Res. Lett., 23, 1557–1560. Wiemer, S., and S. McNutt (1997), Variations in frequency-magnitude distribution with depth in two volcanic areas: Mount St. Helens,Washington, and Mt. Spurr, Alaska, Geophys. Res. Lett., 24, 189–192. Wiemer, S., and M. Wyss (2000), Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the Western United States, and Japan, Bull. Seismol. Soc. Am., 90, 859– 869. Wiemer, S., and M. Wyss (2002), Mapping spatial variability of the frequency- magnitude distribution of earthquakes, Adv. Geophys., 45, 259– 302. Wiemer, S., S. R. McNutt, and M. Wyss (1998), Temporal and threedimensional spatial analyses of the frequency-magnitude distribution near Long Valley Caldera, California, Geophys. J. Int., 134, 409– 421. Wyss, M. (1973), Towards a physical understanding of the earthquakefrequency distribution, Geophys. J. R. Astron. Soc., 31, 341–359. Wyss, M., K. Shimazaki, and S. Wiemer (1997), Mapping active magma chambers beneath the off-Ito volcano, Japan, J. Geophys. Res., 102, 413– 420. Wyss, M., F. Klein, K. Nagamine, and S. Wiemer (2001), Anomalously high b-values in the south flank of Kilauea Volcano, Hawaii: Evidence for the distribution of magma below Kilauea’s East Rift Zone, J. Volcanol. Geotherm. Res., 106, 23– 37.en
dc.description.obiettivoSpecifico1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attiveen
dc.description.obiettivoSpecifico4.3. TTC - Scenari di pericolosità vulcanicaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorMurru, M.en
dc.contributor.authorConsole, R.en
dc.contributor.authorFalcone, G.en
dc.contributor.authorMontuori, C.en
dc.contributor.authorSgroi, T.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0002-7385-394X-
crisitem.author.orcid0000-0002-2554-4421-
crisitem.author.orcid0000-0001-8079-8451-
crisitem.author.orcid0000-0001-7030-0699-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2006JB004791.pdf732.22 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

20
checked on Feb 10, 2021

Page view(s) 50

403
checked on Apr 24, 2024

Download(s)

30
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric