Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3743
DC FieldValueLanguage
dc.contributor.authorallItaliano, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallMartinelli, G.; ARPA Emilia Romagnaen
dc.contributor.authorallPlescia, P.; CNR-ISMN - Montelibrettien
dc.date.accessioned2008-04-10T06:16:46Zen
dc.date.available2008-04-10T06:16:46Zen
dc.date.issued2008-01en
dc.identifier.urihttp://hdl.handle.net/2122/3743en
dc.description.abstractField observations coupled with experimental results show that CO2 can be produced by mechanical energy applied to carbonate rocks becoming an unexpected additional gas source besides that degassed from the mantle or produced by thermometamorphism. The evidence that a large amount of carbon dioxide associated with radiogenic-type helium (R/Ra as low as 0.01–0.08) is released through continental areas, denotes the absence of a contribution from the mantle or from mantle-derived fluids. Data collected during the seismic crisis which struck the Central Apennines in 1997–98 have shown an enhanced CO2 flux not associated with the presence of mantle or thermometamorphic-derived fluids. On the other hand, new experimental results highlight the possibility of producing CO2 by mechanical energy that acts on the calcite crystalline lattice. While the CO2 released over the geothermal areas (e.g., Larderello Geothermal Field) is obviously derived by mantlederived activities, this is not the case of the huge amount of CO2 released over the seismically active areas where the presence mantle-derived products is ruled out. We propose that mechanical energy, e.g., released during seismic events, microseismicity or creeping processes is a possible additional energy source able to produce CO2 and thus could explain the presence of CO2 degassing over tectonic areas where the influence of the mantle is low. 1. Introduction Apart from the water vaen
dc.language.isoEnglishen
dc.publisher.nameBirkhauser Verlagen
dc.relation.ispartofPure and Applied Geophysicsen
dc.relation.ispartofseries1/165 (2008)en
dc.subjectIsotopeen
dc.subjectGeochemistryen
dc.subjectseismicityen
dc.subjectCO2 productionen
dc.titleCO2 Degassing over Seismic Areas: The Role of Mechanochemical Production at the Study Case of Central Apenninesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber75–94en
dc.subject.INGV05. General::05.02. Data dissemination::05.02.01. Geochemical dataen
dc.identifier.doi10.1007/s00024-007-0291-7en
dc.relation.referencesAGLIETTI, E.F., LOPEZ, P.J.M, and PEREIRA, E. (1986), Mechanochemical effects in kaolinite grinding, Int. J. Min. Proc. 16, 135–146. AMATO, A. and 18 others (1998), The 1997 Umbria-Marche, Italy, earthquake sequence: A first look at the main shocks and aftershocks, Geophys. Res. Lett. 25, 15, 2861–2864. BARBIER, E. and FANELLI, M. (1976), Main fractures of Italy from Earts satellite images and correlations with thermal springs, volcanoes and earthquakes. In (Aoki, H. and Iizuka, S., Eds.). BASILI, R. and MEGHRAOUI, M. (2001), Coseismic and postseismic displacement related with the 1997 earthquake sequence in Umbria-Marche (Central Italy), Geophys. Res. Lett. 28, 14, 2695–2698. BOSCHI, E., GUIDOBONI, E., FERRARI, G., MARIOTTI, D., VALENSISE, G., and GASPERINI, P. (2000), Catalogue of Strong Italian Earthquakes from 461 BC to 1197- Introductory text and CDrom. Annali di Geofisica 43, 4, 609–868. CARACAUSI, A., ITALIANO, F., MARTINELLI, G., PAONITA, A., and RIZZO, A. (2005), Long-term geochemical monitoring and extensive/compressive phenomena: Case study of the Umbria region (Central Apennines, Italy), Annals of Geophys. 48, 1, 43–53. CATALDI, R., MONGELLI, F., SQUARCI, P., TAFFI, L., ZITO, G., and CALORE, C. (1995), Geothermal ranking of Italian territory. Geothermics 24, 115–129. CATALOGO DELLA SISMICITa` ITALIANA (2003), CSI 1.1 1981–2002, http://legacy.ingv.it/CSI/. CERLING, T., QUADE, J., YANG, W., and BOREMAN, J. (1989), Soil and paleosols as ecologic and paleoecologic indicators, Nature 341, 138–139. CHIODINI, G., FRONDINI, F., and PONZIANI, F. (1995), Deep structures and carbon dioxide degassing in Central Italy, Geothermics 24, 81–94. CHIODINI, G., FRONDINI, F., KERRIK, D.M., ROGIE, J., PARELLO, F., PERUZZI, L., ZANZARI, A.R. (1999), Quantification of deep CO2 fluxes from central Italy. Examples of carbon balance for regional aquifers and of soil diffuse degassing. Chem. Geol. 159, 205–222. FAURE, G., Principles of Isotope Geology (J. Wiley, New York 1977). FAVARA, R., ITALIANO, F., and MARTINELLI, G. (2001), Earthquake-induced chemical changes in thermal waters of Umbria region during the 1997–1998 seismic swarm, Terra Nova, 13-3, 227–233. FREPOLI, A. and AMATO, A. (1997), Contemporaneous extension and compression in the Northern Apennines from earthquake fault-plane solutions, Geophys. J. Int. 129, 368–388. 92 F. Italiano et al. Pure appl. geophys., GIANELLI,, G. (1985), On the origin of geothermal CO2 by metamorphic processes, Boll. Soc. Geol. Ital. 104, 575–584. HEINICKE, J., ITALIANO, F., LAPENNA, V., MARTINELLI, G., NUCCIO, P.M. (2000), Coseismic geochemical variations in some gas emissions of Umbria region, Central Italy, Phys. Chem. Earth 25, 289–293. HEINICKE, J., BRAUN, T., BURGASSI, P., ITALIANO, F., and MARTINELLI, G. (2006), Gas flux anomalies in seismogenic zones in the Upper Tiber Valley, Central, Geophys. J. Int. 167, 794–806. HICKMAN, S. (1991), Stress in the lithosphere and the strength of active faults, Rev. Geophys. 29, 759–775. IRWIN, W.P. and BARNES, I. (1980), Tectonic relations of carbon dioxide discharges and earthquakes, J. Geophys. Res. 85 (B6), 3115–3121. ITALIANO, F., NUCCIO, P.M., and PECORAINO, G. (1994), Fumarolic gas output at La Fossa di Vulcano Crater, Acta Vulcanolog. 6, 39–40. ITALIANO, F., MARTELLI, M., MARTINELLI, G., and NUCCIO, P.M. (2000), Geochemical evidences of melt intrusions along lithospheric faults of Irpinian Apennines (Southern Italy): Geodynamic and seismogenetic implications, J. Geophys. Res. 105, B6, 13569–13578. ITALIANO,, F., MARTINELLI, G., and NUCCIO, P. M. (2001), Anomalies of mantle-derived helium during the 1997– 1998 seismic swarm of Umbria-Marche, Italy, Geophys. Res. Lett. 28, 5, 839–842. ITALIANO, F., MARTINELLI, G., and RIZZO, A. (2004), Seismogenic-induced variations in the dissolved gases of the thermal waters of the Umbria region ðCentral Apennines, ItalyÞ during and after the 1997–1998 seismic swarm. G-Cubed 5, 11, doi:10.1029/2004GC000720. JAVOY, M., PINEAU, F., and DELORME, H. (1986), Carbon and nitrogen isotopes in the mantle, Chem. Geol. 57, 41–62. KAMEDA, J., SARUWATARI, K., and TANAKA, H. (2004), H2 generation during grinding of kaolinite, J. Colloid and Interface Sci. 275, 225–286. KANAMORI, H. (1994), Mechanics of earthquakes, Ann. Rev. Earth Planet. Sci. 22, 207–237. KHOMENKO, V.M. and Langer, K. (1999), Aliphatic hydrocarbons in structural channels of cordierite: A first evidence from polarized single-crystal IR absorption spectroscopy, Am. Min. 84, 1181–1185. KISSIN, I.G. and PAKHOMOV, S.I. (1967), The possibility of carbon dioxide generation at depth at moderately low temperature, Dokl. Akad. Nauk SSSR 174, 451–454. KISSIN, I.G. and PAKHOMOV, S.I. (1969), A contribution to the geochemistry of carbon dioxide in deep zones of underground hydrosphere. Geokhimiya, 4, 450–471 (in Russian). KISSIN, I.G. and PAKHOMOV, S.I. (1975), Some features of the geochemistry of thermal water in platform areas from experimental data. Proceedings of the Grenoble Symposium, August 1975, IAHS publication 119, 7–15. MAMYRIN, B. A. and TOLSTIKHIN, I. N. (1981), Helium Isotopes in Nature (Energoizdat, Moscow) [in Russian]. MARINI, L. and CHIODINI, G. (1994), The role of carbon dioxide in the carbonate-evaporite geothermal systems of Tuscany and Latium ðItalyÞ, Acta Vulcanol. 5, 95–104. MARTINELLI, G. and PLESCIA P. (2004), Mechanochemical dissociation of calcium carbonate: laboratory data and relation to natural emissions of CO2, Phys. Earth Planet. Int. 142, 3–4, 205–214. MARTY, B., JAMBON, A., and SANO, Y. (1989), Helium isotopes and CO2 in volcanic gases of Japan. Chem. Geol, 76, 25–40. MINISSALE, A. (1991), Thermal springs in Italy: Their relation to recent tectonics, Appl. Geochem. 6, 201–212. MINISSALE, A., (2004), Origin, transport and discharge of CO2 in Central Italy. Earth Sci. Rev. 66, 89–141. MINISSALE, A., EVANS, W., MAGRO, G., and VASELLI, O. (1997a), Multiple source components in gas manifestations from northcentral Italy, Chem. Geol. 142, 175–192. MINISSALE, A., KERRICK, D.M., MAGRO, G., MURRELL, M.T., PALADINI, M., RIHS, S., STURCHIO, N.C., TASSI, F., and VASELLI, O. (2002), Geochemistry of Quaternary travertines in the region north of Rome ðItalyÞ : structural, hydrologic and paleoclimatic implications, Earth Planet. Sci. Lett. 203 709–728. MONTONE, P., AMATO, A., FREPOLI, A., MARIUCCI, M.T., and CESARO, M. (1997), Crustal stress regime in Italy, Annali di Geofisica XL, 3, 741–757. MORELLI,, A., EKSTROM, G., and OLIVERI, M. (2000), Source properties of the 1997–1998 Central Italy earthquake sequence from inversion of long-period and broad-band seismograms, J. Seismol. 4, 365–375. O’NIONS, R.K. and OXBURGH, E.R. (1983), Heat and helium in the Earth, Nature 306, 429–431. OZIMA, M. and PODOSEK, F.A. Noble Gas Geochemistry. (Cambridge University Press, Cambridge, 1983) 286 pp. PANICHI, C., and TONGIORGI, E. (1976), Carbon isotopic composition of CO2 from springs, fumaroles, mofettes and travertines of central and southern Italy: A preliminary prospection method of geothermal areas, Proc. Vol. 165, 2008 CO2 Degassing over Seismic Areas 93 2nd U.N. Symp. on the Develop. and Use of Geotherm. Energy, San Francisco, USA., 20–29 May 1975, pp. 815–825. PLESCIA, P., GIZZI, D., BENEDETTI, S., CAMILUCCI, L., FANIZZA, C., and PAGLIETTI, F. (2003), Mechanochemical treatment to recycling asbestos containing waste, Waste Managem. 23, 209–218. POLYAK, B.G., TOLSTIKHIN, I.N. (1985), Isotopic composition of the Earth’s helium and the problem of tectogenesis. Chem. Geol. 52, 9–33. ROLLINSON, H., Using Geochemical Data (Longman Group, London 1993). SANO, Y., WAKITA, H., ITALIANO, F., and NUCCIO, P.M. (1989), Helium isotopes and tectonics in southern Italy, Geophys. Res. Lett. 16, 6, 511–514. STOPPA, F. (1988), L’eurimite di Colle Fabbri ðSpoletoÞ: un litotipo ad affinita` carbonatitica in Italia, Boll. Soc. Geol. It. 107, 239–248. STOPPA, F. and SFORNA, S. (1995), Geological map of the San Venanzo volcano ðCentral ItalyÞ: Explanatory notes, Acta Vulcanologica 7, 85–91. STRAMONDO et al. (1999). ZOBACK, M.L., ZOBACK, V., MOUNT, J., EATON, J., and HEALY et al. (1987), New evidence of the state of stress of the San Andreas fault zone, Sci. 238, 1105–1111.en
dc.description.obiettivoSpecifico3.2. Tettonica attivaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorItaliano, F.en
dc.contributor.authorMartinelli, G.en
dc.contributor.authorPlescia, P.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentARPA Emilia Romagnaen
dc.contributor.departmentCNR-ISMN - Montelibrettien
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptARPA Emilia-Romagna-
crisitem.author.deptIstituto per lo Studio dei Materiali Nanostrutturati, ISMN-CNR, Montelibretti (RM), Italy-
crisitem.author.orcid0000-0002-9465-6398-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
CO2 _pageoph.pdfmain article427.27 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

32
checked on Feb 10, 2021

Page view(s) 20

294
checked on Apr 17, 2024

Download(s)

53
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric