Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3718
DC FieldValueLanguage
dc.contributor.authorallGranieri, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallChiodini, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallMarzocchi, W.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallAvino, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2008-04-02T06:20:24Zen
dc.date.available2008-04-02T06:20:24Zen
dc.date.issued2003en
dc.identifier.urihttp://hdl.handle.net/2122/3718en
dc.description.abstractCarbon dioxide soil flux was continuously measured during 4 years (1998-2002) inside the crater of Solfatara by using the ‘time 0, depth 0’ accumulation chamber method.The CO2 soil flux (FCO2 ) is strongly influenced by external factors, such as the barometric pressure, the air and soil temperature and humidity, the wind speed, the amount of rain, and so on.Here, we apply a two-step filtering technique to remove the contribution of these external factors from the raw data and to highlight variations in gas flow from depth.In the first step we apply multiple regression and a best-subset search procedure to determine the minimal number of parameters to insert in the regression model. In the second step we apply time filtering on the residuals of the previous analysis through an ARIMA (integrated autoregressive moving average) model which allows us to quantify long-term trends and short-term periodicities.The statistical analysis showed that (1) the highest frequency fluctuations are due to variations of environmental parameters (particularly soil humidity and air temperature) and (2) the long-term trend of the filtered data is correlated with the ground deformation.This correlation is enhanced by back-shifting the CO2 flux signal by 3 months.These observations, along with the likelihood that the ground deformation at Phlegraean Fields is controlled by fluid pressure within the hydrothermal system, indicate that the long-term trend in soil CO2 flux is related to fluid pressure changes at depth.The delay between the soil CO2 flux and the ground deformation is most probably due to the inertia of the gas moving in the subsoil.en
dc.description.sponsorshipNational Vocanic Group (GNV) European Community (Geowarn project)en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofEarth and Planetary Science Lettersen
dc.relation.ispartofseries/212 (2003)en
dc.subjectcarbon dioxide soil fluxen
dc.subjectSolfataraen
dc.subjectchamber methoden
dc.subjectmonitoringen
dc.titleContinuous monitoring of CO2 soil diffuse degassing at Phlegraean Fields (Italy): influence of environmental and volcanic parametersen
dc.typearticleen
dc.description.statusPublisheden
dc.description.pagenumber167-179en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.identifier.doi10.1016/S0012-821X(03)00232-2en
dc.relation.references[1] P. Allard, J.M. Carbonelle, R. Faivre-Peirret, D. Martin, J.C. Sabroux, P. Zettwoog, Eruptive and diffusive emissions of CO2 from Mt. Etna, Nature 351 (1991) 387-391. [2] B. Badalamenti, S. Gurrieri, S. Hauser, M. Valenza, Soil CO2 output in the Island of Vulcano during the period 1984-1988: surveillance of gas hazard and volcanic activity, S.I.M.P. Carapezza memorial 43 (1988) 893-899. [3] B. Badalamenti, S. Gurrieri, S. Hauser, F. Parello, M. Valenza, Change in the soil CO2 output at Vulcano during the summer 1998, Acta Vulcanologica 1 (1991) 219-221. [4] B. Badalamenti, S. Gurrieri, P.M. Nuccio, M. Valenza, Gas hazard on Vulcano Island, Nature 350 (1991) 26-27. [5] J.C. Baubron, P. Allard, J.P. Toutain, Diffuse volcanic emission of carbon dioxide from Vulcano Island, Italy, Nature 344 (1990) 51-53. [6] M.L. Carapezza, S. Giammanco, S. Gurrieri, S. Hauser, P.M. Nuccio, F. Parello, M. Valenza, Soil gas geochemistry: CO2. Mt. Etna the 1989 eruption, in: F. Barberi, A. Bertagnini & P. Landi, (Editors), 1990, pp. 62-64. [7] S. Lombardi, M. Di Filippo, L. Zantederchi, Helium in Phlegraean Fields. Bull. Volcanol, 47 (1984) 259-265. [8] S. Lombardi, G. Nappi, Helium in soil gas at Lipari and Stromboli Volcanoes, Per. Mineral. 55 (1986) 165-176. [9] S.N. Williams, J.S. Schaefet, L.C. Stephen, M.L. Calvache, D. Lopez, Global carbon dioxide emissions to the atmosphere by volcanoes, Geochim. Cosmochim.Acta 56 (1992) 1765-1770. [10] S.L. Brantley, K.W. Koepenick, Measured carbon dioxide emissions from Oloinyo Lengai and skewed distribution of passive volcanic fluxes, Geology 23 (1995) 933-936. [11] J.C. Baubron, P. Allard, J.C. Sabroux, D. Tedesco, J.P. Toutain, Soil gas emanations as precursory indicators of volcanic eruptions, J. Geol. Soc. Lond. 148 (1991) 571-576. [12] G. Chiodini, F. Frondini, B. Raco, Diffuse emission of CO2 from the Fossa crater, Vulcano Island, Bull. Volcanol. 58 (1996) 41-50. [13] G. Chiodini, C. Cardellini, F. Frondini, D. Granieri, L. Marini, G. Ventura, CO2 degassing and energy release at Solfatara Volcano, Campi Flegrei, Italy, J. Geophys. Res. 106, B8 (2001) 16213-16221 [14] K.J. Parkinson, An improved method for measuring soil respiration in the field, J. Appl. Ecol. 18 (1981) 221-228. [15] F. Tonani, G. Miele, Methods for measuring flow of carbon dioxide through soils in the volcanic setting, International Conference on Active Volcanoes and Risk Mitigation, Napoli, 27 August-1 September, 1991. [16] G. Chiodini, R. Cioni, M. Guidi, L. Marini, B. Raco, Soil CO2 flux measurements in volcanics and geothermal areas, Appl. Geochem. 13 (1998) 543-552. [17] R. Cioni, E. Corazza, L. Marini, The gas/steam ratio as indicator of heat transfer at the Solfatara fumaroles, Phlegraean Fields (Italy), Bull. Volcanol. 47 (1984) 295-302. [18] N. Draper, H. Smith, Applied Regression Analysis, Second Edition, 1981. [19] G.E.P. Box, Use and abuse of regression, Technometrics 8 (1966) 625-629. [20] M.J. Garside, Best subset search, Applied Statistics 20 (1971) 112-115. [21] G.E.P. Box, G.M. Jenkins, Time Series Analysis: Forecasting and Control, Holden-Day, Merrifield, Va., 1976. [22] M.B. Priestley, Spectral Analysis and Time Series, vol. 1. Academic, San Diego, Calif., 1981. [23] H. Akaike, A Bayesian analysis of the minimum AIC procedure, Ann. Inst. Statist. Math. 30A (1978) 9-14. [24] W.A. Fuller, Introduction to Statistical Time Series, John Wiley, New York, 1976. [25] W. Marzocchi, G. Vilardo, D.P. Hill, G.P. Ricciardi, C. Ricco, Common features and peculiarities of the seismic activity at Campi Flegrei, Long Valley, and Vesuvius, Bull. Seismol. Soc. Am. 91 (2001) 191-205. [26] G. Chiodini, L. Marini, M. Russo, Geochemical evidence for the existence of high-temperature hydrothermal brines at Vesuvio volcano, Italy, Geoch. Cosmoch. Acta 65 14 (2001) 1-19. [27] J.D. Rogie, D.M. Kerrick, M.L. Sorey, Dynamics of Carbon Dioxide emission at Mammoth Mountain, California, Earth Planet. Sci. Lett. 188 (2001) 535-541. [28] G. Orsi, L. Civetta, C. Del Gaudio, S. De Vita, M. Di Vito, R. Isaia, S.M. Petrazzuoli, G.P. Ricciardi, C. Ricco, Short-term deformations and seismicity in the resurgent Campi Flegrei caldera (Italy): An example of active block-resurgence in a densely populeted area, J. Volcanol. Geotherm. Res. 91 (1999) 415-451. [29] F. Barberi, G. Corrado, F. Innocenti, G. Luongo, Phlegraean Fields 1982-1984: Brief chronicle of a volcano emergency in a densely populated area, Bull. Volcanol. 47 (1984) 175-185. [30] M. Bonafede, Hot fluid migration, an efficient source of ground deformation, application to the 1982-1985 crisis at Campi Flegrei-Italy, J. Volcanol. Geotherm. Res. 48 (1991) 187-198. [31] M. Bonafede and M. Mazzanti, Modeling gravity variations consistents with ground deformation in the Campi Flegrei Caldera (Italy), J. Volcanol. Geotherm. Res. 81 (1998) 137-157. [32] G. Saccorotti, F. Bianco, M. Castellano, E. Del Pezzo, The July-August 2000 seismic swarms at Campi Flegrei volcanic complex, Italy, Geophys. Res. Lett. 28 (2001) 2525-2528.en
dc.description.obiettivoSpecifico1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attiveen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorGranieri, D.en
dc.contributor.authorChiodini, G.en
dc.contributor.authorMarzocchi, W.en
dc.contributor.authorAvino, R.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0003-2831-723X-
crisitem.author.orcid0000-0002-0628-8055-
crisitem.author.orcid0000-0002-9114-1516-
crisitem.author.orcid0000-0003-2686-220X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2003_Continuous_monitoring_Solfatara.pdf1.1 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

79
checked on Feb 10, 2021

Page view(s)

172
checked on Apr 20, 2024

Download(s)

32
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric