Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3716
DC FieldValueLanguage
dc.contributor.authorallCurrenti, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallDel Negro, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallSasai, Y.; Disaster Prevention Division, Tokyo Metropolitan Government, Japanen
dc.date.accessioned2008-04-02T06:07:45Zen
dc.date.available2008-04-02T06:07:45Zen
dc.date.issued2008-02en
dc.identifier.urihttp://hdl.handle.net/2122/3716en
dc.description.abstractWe investigated time dependent piezomagnetic fields due to volcanic sources embedded in a viscoelastic, homogeneous half-space. Especially in volcanic areas, the presence of inhomogeneous materials and high temperatures produce a lower effective viscosity of the Earth’s crust that calls for considering anelastic properties of the medium. Piezomagnetic properties are carried by grains of titano-magnetite, which occupy only a small fraction of ordinary rock volume and are supposed to be elastic, while the non-magnetic surrounding matrix is assumed to be viscoelastic. From all the possible rheological models, we investigated two cases in which the bulk modulus is purely elastic and the shear modulus relaxes as: (i) a Maxwell solid and (ii) a standard linear solid (SLS). We applied the Correspondence Principle to the analytical elastic solutions for pressurized spherical sources and dislocation sources in order to determine the time dependent piezomagnetic fields in a viscoelastic medium. The piezomagnetic field completely vanishes after the relaxation process for a Maxwell rheology, whereas it is found to decrease over time and reach some finite offset value for a SLS rheology. These different behaviours provide helpful hints in understanding the temporal evolution of piezomagnetic anomalies in volcanic regions.en
dc.language.isoEnglishen
dc.publisher.nameBlakwell Publishingen
dc.relation.ispartofGeophysical Journal Internationalen
dc.relation.ispartofseries2/172 (2008)en
dc.relation.isversionofhttp://hdl.handle.net/2122/3080en
dc.subjectpiezomagnetismen
dc.titleTime dependent piezomagnetic fields in viscoelastic mediumen
dc.typearticleen
dc.description.statusPublisheden
dc.description.pagenumber536-548en
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Modelsen
dc.identifier.doi10.1111/j.1365-246X.2007.03679.xen
dc.relation.referencesBonafede, M., Dragoni, M. & Quareni, F., 1986. Displacement and stress fields produced by a pressure source in a viscoelastic half-space: application to the study of ground deformation and seismic activity at Campi Flegrei, Italy, Geophys. J. R. astr. Soc., 87, 455–485. Christensen, R.M., 1971. Theory of Viscoelasticity: An Introduction, Academic Press, New York. Christensen, R.M., 1982. Theory of Viscoelasticity: An Introduction, 2nd edn, 364 pp., Academy Press, New York. Currenti, G., Del Negro, C. & Ganci, G., 2007a. Modelling of ground deformation and gravity fields using finite element method: an application to Etna volcano, Geophys. J. Int., doi:10.1111/j.1365-246X.2007.03380.x. Currenti, G., Del Negro, C., Johnston, M.&Sasai,Y., 2007b. Close temporal correspondence between geomagnetic anomalies and earthquakes during the 2002–2003 eruption of Etna volcano, J. geophys. Res., 112, B09103, doi:10.1029/2007JB005029. Del Negro, C. & Currenti, G., 2003. Volcanomagnetic signals associated with the 2001 flank eruption of Mt. Etna (Italy), Geophys. Res. Lett., 30(7), 1357. Del Negro, C. & Napoli, R., 2004. Magnetic field monitoring at Mt. Etna during the last 20 years, in Etna Volcano Laboratory pp. 241–262, eds Calvari, S., Bonaccorso, A., Del Negro, C. L. & Falsaperla, S., AGU, Geophysical monograph series. Del Negro, C., Currenti, G., Napoli, R. & Vicari, A., 2004. Volcanomagnetic changes accompanying the onset of the 2002–2003 Eruption of Mt. Etna (Italy), Earth Planet. Sci. Lett., 229, 1–14, doi:10.1016/j.epsl.2004.10.033. Dragoni, M. & Magnanensi, C., 1989. Displacement and stress produced by a pressurized, spherical magma chamber, surrounded by a viscoelastic shell, Phys. Earth Planet. Inter, 56, 316–328. Fernandez, J., Tiampo, K.F. & Rundle, J.B., 2001. Viscoelastic displacement and gravity changes due to point magmatic intrusions in a gravitational layered solid earth, Geophys. J. Int., 146, 155–170. Folch, A., Fernandez, J., Rundle, J.B. & Marti, J., 2000. Ground deformation in a viscoelastic medium composed of a layer overlying a half-space: a comparison between point and extended sources, Geophys. J. Int., 140, 37–50. Fung, Y.C., 1965. Foundations of Solid Mechanics, Prentice-Hall, Englewood Cliffs. Japanese traslation by Y. Ohashi, S. Murakami and N. Kamiya, 1970, Baifukan, 524 pp. Johnston, M.S., 2002. Electromagnetic fields generated by earthquakes, International Handbook of Earthquake and Engineering Seismology, 81, 621–635. Lee, E., 1955. Stress analysis in viscoelastic bodies, Quart. J. Appl. Math., 13, 183–190. Nagata, T., 1970. Basic magnetic properties of rocks under mechanical stresses, Tectonophysics, 9, 167–195. Newman, A.V., Dixon,T.H., Ofoegbu, G.I.&Dixon, J.E., 2001. Geodetic and seismic constraints on recent activity at Long Valley Caldera, California: evidence for viscoelastic rheology, Jour. Volcan. Geother. Res., 105, 183– 206. Peltier,W.R., 1974. The impulse response of a Maxwell earth, Rev. Geophys. Space Phys., 12, 649–669. Piombo, A., Tallarico, A. & Dragoni, M., 2007. Displacement, strain and stress fields due to shear and tensile dislocations in a viscoelastic halfspace, Geophys. J. Int., doi:10.1111/j.1365-246X.2007.03283.x Pozzi, J.P., 1977. Effects of stresses on magnetic properties of volcanic rocks, Phys. Earth Planet. Int., 14, 77–85. Okubo, A. & Oshiman, N., 2004. Piezomagnetic field associated with a numerical solution of the Mogi model in a non-uniform elastic medium, Geophys. J. Int., 159, 509–520. Rundle, J.B., 1978. Viscoelastic crustal deformation by finite quasi-static sources, J. geophys. Res., 83, 5939–5945. Sasai, Y., 1979. The piezomagnetic field associated with the Mogi model, Bull. Earthq. Res. Inst., Univ. Tokyo, 54, 1–29. Sasai,Y., 1980. Application of the elasticity theory of dislocations to tectonomagnetic modelling, Bull. Earthq. Res. Inst., Univ. Tokyo, 55, 387–447. Sasai, Y., 1986. A Green’s function for tectonomagnetic problems in an elastic half-space, J. Geomag. Geoelectr., 38, 949–969. Sasai, Y., 1991a. Piezomagnetic field associated with the Mogi model revisited: analytic solution for finite spherical source, J. Geomag. Geoelectr., 43, 21–64. Sasai, Y., 1991b. Tectonomagnetic modeling on the basis of the linear piezomagnetic effect, Bull. Earthq. Res. Inst., Univ. Tokyo, 65, 585– 722. Sasai, Y., Uyeshima, M., Zlotnicki, J., Utada, H., Kagiyama, T., Hashimoto, T. & Takahashi, T., 2002. Magnetic and electric eld observations durino the 2000 activity of Miyake-jima volcano, Central Japan, Earth Planet. Sci. Lett., 203, 769–777. Trasatti, E., Giunchi, C. & Bonafede, M., 2003. Effects of elastic and rheological layering on ground deformation in volcanic regions, J. Volcan. Geotherm. Res., 122, 89–110. Utsugi, M., Nishida, Y. & Sasai, Y., 2000. Piezomagnetic potentials due to an inclined rectangular fault in a semi-infinite medium, Geophys. J. Int., 140, 479–492.en
dc.description.obiettivoSpecifico3.6. Fisica del vulcanismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorCurrenti, G.en
dc.contributor.authorDel Negro, C.en
dc.contributor.authorSasai, Y.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentDisaster Prevention Division, Tokyo Metropolitan Government, Japanen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptEarthquake Research Institute, University of Tokyo, Japan-
crisitem.author.orcid0000-0001-8650-5613-
crisitem.author.orcid0000-0001-5734-9025-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Currenti et al GJI 2008.pdf1.15 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

4
checked on Feb 10, 2021

Page view(s)

108
checked on Apr 20, 2024

Download(s)

17
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric