Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3514
DC FieldValueLanguage
dc.contributor.authorallSasai, Y.; Disaster Prevention Division, Bureau of General Affairs, Tokyo Metropolitan Government, Tokyo, Japanen
dc.contributor.authorallJohnston, M. J. S.; US Geological Survey, Menlo Park, CA, U.S.A.en
dc.contributor.authorallTanaka, Y.; Graduate School of Science, Kyoto University, Japanen
dc.contributor.authorallMueller, R.; US Geological Survey, Menlo Park, CA, U.S.A.en
dc.contributor.authorallHashimoto, T.; Graduate School of Science, Hokkaido University, Japanen
dc.contributor.authorallUtsugi, M.; Graduate School of Science, Kyoto University, Japanen
dc.contributor.authorallSakanaka, S.; Faculty of Engineering and Resource Science, Akita University, Japanen
dc.contributor.authorallUyeshima, M.; Earthquake Research Institute, The University of Tokyo, Japanen
dc.contributor.authorallZlotnicki, J.; Observatoire de Physique du Globe de Clermont-Ferrand, Franceen
dc.contributor.authorallYvetot, P.; Observatoire de Physique du Globe de Clermont-Ferrand, Franceen
dc.date.accessioned2007-12-20T13:47:51Zen
dc.date.available2007-12-20T13:47:51Zen
dc.date.issued2007-02en
dc.identifier.urihttp://hdl.handle.net/2122/3514en
dc.description.abstractWe show that using borehole measurements in tectonomagnetic experiments allows enhancement of the observed signals. New magnetic dipoles, which vary with stress changes from mechanical sources, are produced on the walls of the borehole. We evaluate such an effect quantitatively. First we formulate a general expression for the borehole effect due to any arbitrary source models. This is valid everywhere above the ground surface as well as within the cylindrical hole. A first-order approximate solution is given by a line of horizontal dipoles and vertical quadrupoles along the central axis of the borehole, which is valid above the ground surface and a slightly away (several tens of cm) from the top of the borehole. Selecting the Mogi model as an example, we numerically evaluated the borehole effect. It turned out that the vertical quadrupoles produce two orders of magnitude more intense magnetic field than the horizontal dipoles. The borehole effect is very local, i.e. detectable only within a few m from its outlet, since it is of the same order or more than the case without a borehole. However, magnetic lines of force cannot reach the ground surface from a deeper portion (>10 m) of a borehole.en
dc.language.isoEnglishen
dc.relation.ispartofseries1/50 (2007)en
dc.subjectpiezomagnetic effecten
dc.subjectborehole magnetic measurementen
dc.subjectthe Mogi modelen
dc.subjectLong Valleyen
dc.titleDrag-out effect of piezomagnetic signals due to a borehole: the Mogi source as an exampleen
dc.typearticleen
dc.type.QualityControlPeer-revieweden
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonicsen
dc.relation.referencesEASON, G., B. NOBLE and I.N. SNEDDON (1955): On certain integrals of Lipschitz-Hankel type involving products of Bessel functions, Phil. Trans. R. Soc. London Ser. A, 247, 529-551. HASHIMOTO, T.,Y. TANAKA, M.J.S. JOHNSTON, M. UTSUGI, Y. SASAI and S. SAKANAKA (2003): On the annual variations in geomagnetic differences observed in Long Valley Caldera, California, Ann. Disas. Prev. Res. Inst., Kyoto Univ., 46B, 765-777 (in Japanese with English abstract). JOHNSTON, M.J.S., D.P. HILL and A.M. PITT (2000): Strain transient recorded in the Long Valley Caldera during triggered seismicity from the October 16, 1999, M 7.1 Hector Mine, California, earthquake, Eos, Trans. Am. Geophys. Un., 81, WP1384. MOGI, K. (1958): Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them, Bull. Earthqake Res. Inst., Univ. Tokyo, 36, 99-134. MUELLER, R. and M.J.S. JOHNSTON (1998): Review of magnetic field monitoring near active faults and volcanic calderas in California: 1974-1995, Phys. Earth Planet. Inter., 105, 131-144. SASAI, Y. (1983): A surface integral representation of the tectonomagnetic field based on the linear piezomagnetic effect, Bull. Earthq. Res. Inst., Univ. Tokyo, 58, 763-785. SASAI, Y. (1991a): Piezomagnetic field associated with the Mogi model revisited: analytic solution for finite spherical source, J. Geomag. Geoelectr., 43, 21-64. SASAI, Y. (1991b): Tectonomagnetic modeling on the basis of the linear piezomagnetic effect, Bull. Earthquake Res. Inst., Univ. Tokyo, 66, 585-722. SASAI, Y. (1994): Enhancement of piezomagnetic signals within a borehole, in Electromagnetic Phenomena Related to Earthquake Prediction, edited by M. HAYAKAWA and Y. FUJINAWA (Terra Scientific Publishing Co., Tokyo), 51-54. UTADA, H., M. NEKI and T. KAGIYAMA (2000): A study of annual variations in the geomagnetic total intensity with special attention to detecting volcanomagnetic signals, Earth Planets Space, 52, 91-103. UTSUGI, M., Y. NISHIDA and Y. SASAI (2000): Piezomagnetic potentials due to an inclined rectangular fault in a semi- infinite medium, Geophys. J. Int., 140, 479-492. YAMAMOTO, T. (1990): Geomagnetic three components observations using a borehole, in Proceedings of Conductivity Anomaly Symposium, 187-194 (in Japanese).en
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorSasai, Y.en
dc.contributor.authorJohnston, M. J. S.en
dc.contributor.authorTanaka, Y.en
dc.contributor.authorMueller, R.en
dc.contributor.authorHashimoto, T.en
dc.contributor.authorUtsugi, M.en
dc.contributor.authorSakanaka, S.en
dc.contributor.authorUyeshima, M.en
dc.contributor.authorZlotnicki, J.en
dc.contributor.authorYvetot, P.en
dc.contributor.departmentDisaster Prevention Division, Bureau of General Affairs, Tokyo Metropolitan Government, Tokyo, Japanen
dc.contributor.departmentUS Geological Survey, Menlo Park, CA, U.S.A.en
dc.contributor.departmentGraduate School of Science, Kyoto University, Japanen
dc.contributor.departmentUS Geological Survey, Menlo Park, CA, U.S.A.en
dc.contributor.departmentGraduate School of Science, Hokkaido University, Japanen
dc.contributor.departmentGraduate School of Science, Kyoto University, Japanen
dc.contributor.departmentFaculty of Engineering and Resource Science, Akita University, Japanen
dc.contributor.departmentEarthquake Research Institute, The University of Tokyo, Japanen
dc.contributor.departmentObservatoire de Physique du Globe de Clermont-Ferrand, Franceen
dc.contributor.departmentObservatoire de Physique du Globe de Clermont-Ferrand, Franceen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptEarthquake Research Institute, University of Tokyo, Japan-
crisitem.author.deptUS Geological Survey, Menlo Park, CA, U.S.A.-
crisitem.author.deptAso Volcanological Laboratory, Faculty of Science, Kyoto University, Aso, Kumamoto, Japan-
crisitem.author.deptUS Geological Survey, Menlo Park, CA, U.S.A.-
crisitem.author.deptGraduate School of Science, Hokkaido University, Japan-
crisitem.author.deptGraduate School of Science, Kyoto University, Japan-
crisitem.author.deptFaculty of Engineering and Resource Science, Akita University, Japan-
crisitem.author.deptEarthquake Research Institute, The University of Tokyo, Japan-
crisitem.author.deptObservatoire de Physique du Globe de Clermont-Ferrand, UMR6524, France-
crisitem.author.deptUMR6524, Laboratoire de Geophysique d'Orleans, France-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Annals of Geophysics
Files in This Item:
File Description SizeFormat
9Sasai.pdf1.02 MBAdobe PDFView/Open
Show simple item record

Page view(s)

118
checked on Apr 24, 2024

Download(s) 50

156
checked on Apr 24, 2024

Google ScholarTM

Check