Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3504
DC FieldValueLanguage
dc.contributor.authorallOsman, O.; Istanbul Commerce University, Eminonu, Istanbul, Turkeyen
dc.contributor.authorallMuhittin Albora, A.; Istanbul University, Engineering Faculty, Geophysical Department, Avcilar, Istanbul, Turkeyen
dc.contributor.authorallUcan, O. N.; Istanbul University, Engineering Faculty, Electrical & Electronics Dept, Avcilar, Istanbul, Turkeyen
dc.date.accessioned2007-12-20T13:41:31Zen
dc.date.available2007-12-20T13:41:31Zen
dc.date.issued2006-12en
dc.identifier.urihttp://hdl.handle.net/2122/3504en
dc.description.abstractThis paper presents a new approach for interpretation of residual gravity anomaly profiles, assuming horizontal cylinders as source. The new method, called Forced Neural Network (FNN), is introduced to determine the underground structure parameters which cause the anomalies. New technologies are improved to detect the borders of geological bodies in a reliable way. In a first phase one neuron is used to model the system and a back propagation algorithm is applied to find the density difference. In a second phase, density differences are quantified and a mean square error is computed. This process is iterated until the mean square error is small enough. After obtaining reliable results in the case of synthetic data, to simulate real data, the real case of the Gulf of Mexico gravity anomaly map, which has the form of anticline structure, is examined. Gravity anomaly values from a cross section of this real case, result to be very close to those obtained with the proposed method.en
dc.language.isoEnglishen
dc.relation.ispartofseries6/49 (2006)en
dc.subjectForced Neural Networken
dc.subjectgravity anomalyen
dc.subjectmodelingen
dc.subjectsynthetic modelen
dc.subjectGulf of Mexicoen
dc.titleA new approach for residual gravity anomaly profile interpretations: Forced Neural Network (FNN)en
dc.typearticleen
dc.type.QualityControlPeer-revieweden
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.04. Gravity anomaliesen
dc.relation.referencesALBORA, A.M., O.N. UCAN, A. OZMEN and T. OZKAN (2001a): Evaluation of Sivas-Divrigi Region akdag iron ore deposits using cellular neural network, J. Appl. Geophys., 46, 129-142. ALBORA, A.M., O.N. UCAN and A. OZMEN (2001b): Residual separation of magnetic fields using a cellular neural network approach, Pure Appl. Geophys., 158, 1797-1818. ALEXANDER, M. (1999): Northern Gulf of Mexico basement architecture: crustal study to prospect leads, in Society of Exploration of Geophysics Sixty-Ninth Annual Meeting Workshop, Houston TX-U.S.A. BARTON, D.C. (1929): Calculations in the interpretation of observations with the Eötvös torsion balance, Am. Inst. Mining Met. Eng., 2, 481-486. BHATTACHARYYA, B.K. (1964): Magnetic anomalies due to prism-shaped bodies with arbitrary polarization, Geophysics, 29, 517-531. BROWN, M.P. and M.M. POULTON (1996): Location buried objects for environmental site investigations using Neural Networks, J. Environ. Eng. Geophys., 1, 179-188. CHARNIAK, E. and D. MCDERMOTT (1985): Introduction to Artificial Intelligence (Addison-Wesley), pp. 701. DOBRIN, M.B. and C.H. SAVIT (1988): Introduction to Geophysical Prospecting (McGraw-Hill), pp. 867. EL-QADY, G. and K. USHIJIMA (2001): Inversion of Dc resistivity data using neural networks, Geophys. Prospect., 49, 417-430. ESLAM, E., A. SALEM and K. USHIJIMA (2001): Detection of cavities and tunnels from gravity data using a neural network, Explor. Geophys., 32, 204-208. GREEN,W.R. (1975): Inversion of gravity profiles by use of a Backus-Gilbert approach, Geophysics, 45, 403-419. HAYKIN, S. (1999): Neural Networks (Prentice Hall International Inc.), pp. 852. HUBBERT, M.K. (1948): A line integral method of computing the gravimetric effects of two-dimensional masses, Geophysics, 13, 215-225. LAST, B.J. and K. KUBIK (1983): Compact gravity inversion, Geophysics, 48, 713-721. LINES, L.R. and S. TREITEL, (1984): Tutorial a review of least-squares inversion and its application to geophysical problems, Geophys. Prospect., 32, 159-186. MARESCHAL, J.C. (1985): Inversion of potential field data in Fourier transform domain, Geophysics, 50, 685-691. MOSEGAARD, K. and A. TARANTOLA (1995): Monte Carlo sampling of solutions to inverse problems, J. Geophys. Res., 100, 12431-12447. MURTHY, I.V.R. and P.R. RAO (1993a): Inversion of gravity and magnetic anomalies of two-dimensional polygonal cross sections, Comput. Geosci., 19, 1213-1228. MURTHY, I.V.R. and P.R. RAO (1993b): Gravity inversion of horizontal circular discs and vertical circular cylinders, Comput. Geosci., 20, 821-838. MURTHY, I.V.M., P.R. RAO and S.J. RAO (1990): The density difference and generalized programs for two and three-dimensional gravity modeling, Comput. Geosci., 16, 277-287. NAGY, D. (1966): Gravitational attraction of a right rectangular prism, Geophysics, 31, 362-371. NETTLETON, L.L. (1943): Recent experimental and geophysical evidence of mechanics of salt-dome formation, Bull. Assoc. Pet. Geol., 27, 51-63. PARKER, R.L. (1974): Best bounds on density and depth from gravity data, Geophysics, 35, 644-649. PLOUFF, D. (1976): Gravity and magnetic fields of polygonal prisms and application to magnetic terrain corrections, Geophysics, 41, 727-741. ROUTH, E.J. (1908): A Treatise on Analytical Statics (Cambridge University Press), vol. II, 2nd edition, 280-296. SALEM, A. and K. USHIJIMA (2001): Automatic detection of UXO from airborne magnetic data using a Neural Network, Subsurf. Sensing Tecnol. Appl., 2 (3), 191-213. SALEM, A., D. RAVAT, R. JOHNSON and K. USHIJIMA (2001): Detection of buried steel drums from magnetic anomaly data using a supervised neural network, J. Environ. Eng. Geophys., 6, 115-122. TALWANI, M. (1965): Computation with the help of a digital computer of magnetic anomalies caused by bodies of arbitrary shape, Geophysics, 30, 797-817. TALWANI, M. and M. EWING (1960): Rapid computation of gravitational attraction of 3D bodies of arbitrary shape, Geophysics, 25, 203-225. TSOKAS, G.N. and R.O. HANSEN (1997): Study of the crustal thickness and the subducting lithosphere in Greece from gravity data, J. Geophys. Res., 102, 20585-20597. VAN DER BAAN, M. and C. JUTTEN (2000): Neural Networks in geophysics, Geophysics, 65, 1032-1047.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorOsman, O.en
dc.contributor.authorMuhittin Albora, A.en
dc.contributor.authorUcan, O. N.en
dc.contributor.departmentIstanbul Commerce University, Eminonu, Istanbul, Turkeyen
dc.contributor.departmentIstanbul University, Engineering Faculty, Geophysical Department, Avcilar, Istanbul, Turkeyen
dc.contributor.departmentIstanbul University, Engineering Faculty, Electrical & Electronics Dept, Avcilar, Istanbul, Turkeyen
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.openairetypearticle-
item.grantfulltextopen-
crisitem.author.deptIstanbul Commerce University, Eminonu, Istanbul, Turkey-
crisitem.author.deptIstanbul University, Engineering Faculty, Geophysical Department, Avcilar, Istanbul, Turkey-
crisitem.author.deptIstanbul University, Engineering Faculty, Electrical & Electronics Dept, Avcilar, Istanbul, Turkey-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Annals of Geophysics
Files in This Item:
File Description SizeFormat
06 onur.pdf857.95 kBAdobe PDFView/Open
Show simple item record

Page view(s) 20

252
checked on Jul 4, 2022

Download(s) 5

951
checked on Jul 4, 2022

Google ScholarTM

Check