Please use this identifier to cite or link to this item:
Authors: Osman, O.* 
Muhittin Albora, A.* 
Ucan, O. N.* 
Title: A new approach for residual gravity anomaly profile interpretations: Forced Neural Network (FNN)
Issue Date: Dec-2006
Series/Report no.: 6/49 (2006)
Keywords: Forced Neural Network
gravity anomaly
synthetic model
Gulf of Mexico
Subject Classification04. Solid Earth::04.03. Geodesy::04.03.04. Gravity anomalies 
Abstract: This paper presents a new approach for interpretation of residual gravity anomaly profiles, assuming horizontal cylinders as source. The new method, called Forced Neural Network (FNN), is introduced to determine the underground structure parameters which cause the anomalies. New technologies are improved to detect the borders of geological bodies in a reliable way. In a first phase one neuron is used to model the system and a back propagation algorithm is applied to find the density difference. In a second phase, density differences are quantified and a mean square error is computed. This process is iterated until the mean square error is small enough. After obtaining reliable results in the case of synthetic data, to simulate real data, the real case of the Gulf of Mexico gravity anomaly map, which has the form of anticline structure, is examined. Gravity anomaly values from a cross section of this real case, result to be very close to those obtained with the proposed method.
Appears in Collections:Annals of Geophysics

Files in This Item:
File Description SizeFormat
06 onur.pdf857.95 kBAdobe PDFView/Open
Show full item record

Page view(s) 20

checked on May 23, 2022

Download(s) 5

checked on May 23, 2022

Google ScholarTM