Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/346
DC FieldValueLanguage
dc.contributor.authorallFiebig, J.; Institut de Mineralogie et Geochimie, Universite´ de Lausanne, BFSH 2, CH-1015 Lausanne, Switzerland-
dc.contributor.authorallChiodini, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia-
dc.contributor.authorallCaliro, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia-
dc.contributor.authorallRizzo, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia-
dc.contributor.authorallSpangenberg, J.; Institut de Mineralogie et Geochimie, Universite´ de Lausanne, BFSH 2, CH-1015 Lausanne, Switzerland-
dc.contributor.authorallHunziker, J. C.; Institut de Mineralogie et Geochimie, Universite´ de Lausanne, BFSH 2, CH-1015 Lausanne, Switzerland-
dc.date.accessioned2005-08-04T14:52:51Z-
dc.date.available2005-08-04T14:52:51Z-
dc.date.issued2004-
dc.identifier.urihttp://hdl.handle.net/2122/346-
dc.description.abstractThe chemical and isotopic composition of fumarolic gases emitted from Nisyros Volcano, Greece,and of a single gas sample from Vesuvio, Italy, was investigated in order to determine the origin of methane (CH4) within two subduction-related magmatic-hydrothermal environments. Apparent temperatures derived from carbon isotope partitioning between CH4 and CO2 of around 340°C for Nisyros and 470°C for Vesuvio correlate well with aquifer temperatures as measured directly and/or inferred from compositional data using the H2O-H2-CO2-CO-CH4 geothermometer. Thermodynamic modeling reveals chemical equilibrium between CH4, CO2 and H2O implying that carbon isotope partitioning between CO2 and CH4 in both systems is controlled by aquifer temperature. N2/3He and CH4/3He ratios of Nisyros fumarolic gases are unusually low for subduction zone gases and correspond to those of midoceanic ridge environments. Accordingly, CH4 may have been primarily generated through the reduction of CO2 by H2 in the absence of any organic matter following a Fischer-Tropsch-type reaction. However, primary occurrence of minor amounts of thermogenic CH4 and subsequent re-equilibration with co-existing CO2 cannot be ruled out entirely. CO2/3He ratios and 13CCO2 values imply that the evolved CO2 either derives from a metasomatized mantle or is a mixture between two components, one outgassing from an unaltered mantle and the other released by thermal breakdown of marine carbonates. The latter may contain traces of organic matter possibly decomposing to CH4 during thermometamorphism.en
dc.description.sponsorshipEuropean communityen
dc.format.extent829360 bytes-
dc.format.extent539 bytes-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypetext/html-
dc.language.isoeng-
dc.publisher.nameElsevieren
dc.relation.ispartofGeochimica et Cosmochimica Actaen
dc.relation.ispartofseries10/68(2004)en
dc.subjectfumarolic gasesen
dc.subjecthydrothermal systemsen
dc.subjectchemical and isotopic equilibriumen
dc.titleChemical and isotopic equilibrium between CO2 and CH4 in fumarolic gas discharges: generation of CH4 in magmatic-hydrothermal systemsen
dc.typearticle-
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber2321–2334en
dc.identifier.URLhttp://www.sciencedirect.com/en
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systemsen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.identifier.doidoi:10.1016/j.gca.2003.10.035en
dc.relation.referencesAbrajano T. A., Sturchio N. C., Bohlke J. K., Lyon G. L., Poreda R. J.,and Stevens C. M. (1988) Methane-hydrogen gas seeps, Zambales Ophiolite, Phillipines: Deep or shallow origin? Chem. Geol. 71,211–222. Arnorsson S. and Gunnlaugsson E. (1985) New gas geothermometers for geothermal exploration-calibration and application. Geochim. Cosmochim. Acta. 49, 1307–1325. Berndt M. E., Allen D. E., and Seyfried W. E. (1996) Reduction of CO2 during serpentinization of olivine at 300°C and 500 bar. Geol. 24, 351–354. Blank J. G. and Brooker R. A. (1994) Experimental studies of carbon dioxide in silicate melts: Solubility, speciation, and stable carbon isotope behavior. In Volatiles in Magmas (ed. M. R. Carroll and J. R. Holloway). Rev. Mineral. 30, 157–186. Brombach T (2000) Fluid geochemistry of hydrothermal systems in volcanic island arcs: Guadeloupe (Lesser Antilles) and Nisyros (Greece). PhD. Thesis, University of Lausanne. Brombach T., Caliro S., Chiodini G., Fiebig J., Hunziker J., and Raco B. (2003) Geochemical evidence for mixing of magmatic fluids with seawater, Nisyros hydrothermal system, Greece. Bull. Volcanol. 65,505–516. Chacko T., Mayeda T. K., Clayton R. N., and Goldsmith J. R. (1991)Oxygen and carbon isotope fractionations between CO2 and calcite. Geochim. Cosmochim. Acta. 55, 2867–2882. Charlou J. L., Bougault H., Appriou P., Jean-Baptiste P., Etoubleau J.,and Birolleau A. (1991) Water column anomalies associated with hydrothermal activity between 11°40 N and 13°N on the East Pacific Rise: Discrepancies between tracers. Deep Sea Res. 38, 569–596. Charlou J. L., Donval J. P., Jean-Baptiste P., Dapoigny A., and Rona P. A. (1996) Gases and helium isotopes in high temperature solutions sampled before and after ODP Leg 158 drilling at TAG hydrothermal field (26°N, MAR). Geophys. Res. Lett. 23, 3491–3494. Charlou J. L., Fouquet Y., Bougault H., Donval J. P., Etoubleau J.,Jean-Baptiste P., Dapoigny A., Appriou P., and Rona P. A. (1998)Intense plumes generated by serpentinization of ultramafic rocks at the intersection of the 15°20 N fracture zone and the Mid-Atlantic Ridge. Geochim. Cosmochim. Acta. 62, 2323–2333. Chiodini G., Cioni R., Leonis C., Marini L., and Raco B. (1993) Fluid geochemistry of Nisyros Island, Dodecanese, Greece. J. Volcanol. Geotherm. Res. 56, 95–112. Chiodini G. and Marini L. (1998) Hydrothermal gas equilibria: The H2O-H2-CO2-CO-CH4 system. Geochim. Cosmochim. Acta. 62, 2673–2687. Chiodini G., Marini L., and Russo M. (2001) Geochemical evidence for the existence of high-temperature hydrothermal brines at Vesuvio volcano, Italy. Geochim. Cosmochim. Acta. 65, 2129–2147. Chiodini G., Brombach T., Caliro S., Cardellini C., Marini L., Dietrich V., (2002). Geochemical indicators of possible ongoing volcanic unrest at Nisyros Island (Greece). Geophys. Res. Lett. 29, No.16., art. no. 1759. Cioni R. and Corazza E. (1981) Medium temperature fumarolic gas sampling. Bull. Volcanol. 44, 23–29. Craig H. (1953) The geochemistry of the stable carbon isotopes. Geochim. Cosmochim. Acta. 3, 53–92. Craig H. and Lupton J. E. (1981) Helium-3 and mantle volatiles in the ocean and in the oceanic crust. In The Sea, vol. 7, The Oceanic Lithosphere (ed. C. Emiliani), pp. 391–428. Wiley, New York. D’Amore F. and Panichi C. (1980) Evaluation of deep temperature of hydrothermal systems by a new gas geothermometer. Geochim. Cosmochim. Acta. 44, 549–556. Deines P. and Gold D. P. (1973) The isotopic composition of carbonatite and kimberlite carbonates and their bearing on the isotopic composition of deep-seated carbon. Geochim. Cosmochim. Acta. 37,1709–1733. Des Marais D. J., Donchin J. H., Nehring M. L., and Truesdell A. H. (1981) Molecular carbon isotopic evidence for the origin of geothermal hydrocarbons. Nature 292, 826. Evans W. C., White L. D., and Rapp J. B. (1988) Geochemistry of some gases in hydrothermal fluids from the southern Juan de Fuca Ridge. J. Geophys. Res. 93, 15305–15313. Fischer T. P., Hilton D. R., Zimmer M. M., Shaw A. M., Sharp Z. D., and Walker J. A. (2002) Subduction and recycling of nitrogen along the central American Margin. Science 297, 1154–1157. Gamo T., Ishibashi J., Sakai H., and Tilbrook B. (1987) Methane anomalies in seawater above Loihi submarine summit area, Hawaii. Geochim Cosmochim. Acta. 51, 2857–2864. Geotermica Italiana. (1983) Nysiros 1 geothermal well. PPC-EEC report, 106pp. (unpubl.). Geotermica Italiana. (1984) Nisyros 2 geothermal well. PPC-EEC report, 44pp. (unpubl.). Gerlach T. M. (1980a) Evaluation of volcanic gas analyses from Kilauea volcano. J. Volcanol. Geotherm. Res. 7, 295–317. Gerlach T. M. (1980b) Chemical characteristics of the volcanic gases from Nyiragongo lava lake and the generation of CH4-rich fluid inclusions in alkaline rocks. J. Volcanol. Geotherm. Res. 8, 177–189. Giggenbach W. F. (1975) A simple method for the collection and analysis of volcanic gas samples. Bull. Volcanol. 39, 15–27. Giggenbach W. F. (1980) Geothermal gas equilibria. Geochim. Cosmochim. Acta. 44, 2021–2032. Giggenbach W. F. (1982) Carbon-13 exchange between CO2 and CH4 under geothermal conditions. Geochim. Cosmochim. Acta. 46, 159–165. Giggenbach W. F. (1987) Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Appl.Geochem. 2, 143–161. Giggenbach W. F. (1991). Chemical techniques in geothermal exploration. In Application of geochemistry in geothermal reservoir development (coordinator F. D’Amore), pp. 119–144. Unitar, New York. Giggenbach W. F. (1995) Variations in the chemical and isotopic composition of fluids discharged from the Taupo Volcanic Zone, New Zealand. J. Volcanol. Geotherm. Res. 68, 89–116. Giggenbach W. F. (1997) Relative importance of thermodynamic and kinetic processes in governing the chemical and isotopic composition of carbon gases in high-heatflow sedimentary systems. Geochim. Cosmochim. Acta. 61, 3763–3785. Giggenbach W. F. (1997b) The origin and evolution of fluids in magmatic-hydrothermal systems. In Geochemistry of hydrothermal ore deposits (ed. H. L. Barnes), pp. 737–796. Wiley. Giggenbach W. F. and Stewart M. K. (1982) Processes controlling the isotopic composition of steam and water discharges from steam vents and steam-heated pools in geothermal areas. Geothermics 11,71–80. Giggenbach W. F. and Matsuo S. (1991) Evaluation of results from second and third IAVCEI field workshop on volcanic gases, Mt Usu, Japan, and White Island, New Zealand. Appl. Geochem. 6, 125–141. Giggenbach W. F., Sano Y., and Wakita H. (1993) Isotopic composition of helium, and CO2 and CH4 contents in gases produced along the New Zealand part of a convergent plate boundary. Geochim. Cosmochim. Acta. 57, 3427–3455. Gold T. (1979) Terrestrial sources of carbon and earthquake outgassing. J. Pet. Geol. 1, 3–19. Gold T. and Soter S. (1982) Abiogenic methane and the origin of petroleum. Energy Explor. Exploit. 1, 89–104. Gunter B. D. (1978) C1-C4 hydrocarbons in hydrothermal gases. Geochim. Cosmochim. Acta. 42, 137–139. Hilton D. R, Fischer T. P, Marty B (2002) Noble Gases and Volatile Recycling at Subduction Zones. In Noble gases in cosmochemistry and geochemistry (ed. D. Porcelli, C. J. Ballentine and R. Wieler), Rev. Mineral. Chap. 9. Holloway J. R. and Blank J. G. (1994) Application of experimental results to C-O-H species in natural melts. In Volatiles in Magmas (ed. M. R. Carroll and J. R. Holloway). Rev. Mineral. 30, 187–230. Horita J. (2001) Carbon isotope exchange in the system CO2-CH4 at elevated temperatures. Geochim. Cosmochim. Acta. 65, 1907–1919. Horita J. and Berndt M. E. (1999) Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science 285, 1055–1057. Hulston J. R. and McCabe W. J. (1962a) Mass spectrometer measurements in the thermal area of New Zealand. Part I. Carbon dioxide and residual gas analysis. Geochim. Cosmochim. Acta. 26, 383–397. Hulston J. R. and McCabe W. J. (1962b) Mass spectrometer measurements in the thermal area of New Zealand. Part II. Carbon isotope ratios. Geochim. Cosmochim. Acta. 26, 399–410. Jean-Baptiste P., Charlou J. L., Stievenard M., Donval J. P., Bougault H., and Mevel C. (1991) Helium and methane measurements in hydrothermal fluids from the Mid-Atlantic-Ridge: The Snakepit site at 23°N. Earth Planet. Sci. Lett. 106, 17–28. Kavouridis T., Kuris D., Leonis C., Liberopoulou V., Leontiadis J.,Panichi C., La Ruffa G., and Caprai A. (1999) Isotope and chemical studies for a geothermal assessment of the island of Nisyros (Greece). Geothermics 28, 219–239. Keller J., Rehren T., and Stadlbauer E. (1990) Explosive volcanism in the Hellenic Arc: a summary and review. In European Geothermal Update. Proceedings of the Third International Seminar on the Results of EC Geothermal Energy Research (eds. D. A. Hardy, J. Keller, V. P. Galanopoulos, N. C. Flemming, and T. H. Druitt), pp. 440–446. Reidel, Dordrecht. Kelley D. S. and Fru¨h-Green G. L. (1999) Abiogenic methane in deep-seated mid-ocean ridge environments: insights from stable isotope analyses. J. Geophys. Res. 104, 10439–10460. Keosian J. (1960) On the origin of life. Science 131, 479–482. Kiyosu Y. (1983) Hydrogen isotopic compositions of hydrogen and methane from some volcanic areas in northeastern Japan. Earth Planet. Sci. Lett. 62, 41–52. Kiyosu Y., Asada N., and Yoshida Y. (1992) Origin of light hydrocarbon gases from the Matsukawa geothermal area in Japan. Chem. Geol. (Isot. Geosci. Sec). 94, 321–329. Kyser T. K. (1986) Stable isotope variations in the mantle. In Stable isotopes in high temperature geological processes (ed. J. W. Valley,H. P. Taylor Jr. and J. R. O’Neil). Rev. Mineral. 16, 141–164. Lancet M. S. and Anders E. (1976) Carbon isotope fractionation in the Fischer-Tropsch synthesis and in meteorites. Science 170, 980–982. Le Pichon X. and Angelier J. (1979) The Hellenic arc and trench system: a key to the neotectonic evolution of the Eastern Mediterranean area. Tectonophys. 60, 1–42. Lilley M. D., Olson E. J., Lupton J. E., Macko S. A., and McDuff R. E. (1993) Anomalous CH4 and NH4 concentrations at an unsedimented mid-ocean ridge hydrothermal system. Nature 364, 45–57. Lott D. E. and Jenkins W. L. (1984) An automated cryogenic charcoal trap system for helium isotope mass spectrometry. Rev. Sci. Instrum. 55, 1982–1988. Lott D. E. (2001) Improvements in noble gas separation methodology:A nude cryogenic trap. G-cubed. 2, 1525–2027. Lyon G. L. and Hulston J. R. (1984) Carbon and hydrogen isotopic compositions of New Zealand geothermal gases. Geochim. Cosmochim. Acta. 48, 1161–1171. Marini L., Principe C., Chiodini G., Cioni R., Fytikas M., and Marinelli G. (1993) Hydrothermal eruptions of Nisyros (Dodecanese, Greece). Past events and present hazards. J. Volcanol. Geotherm. Res. 56, 71–94. Marty B. and Jambon A. (1987) C/3He in volatile fluxes from the solid Earth: Implications for carbon geodynamics. Earth Planet. Sci. Lett. 83, 16–26. Marty B., Jambon A., and Sano Y. (1989) Helium isotopes and CO2 in volcanic gases of Japan. Chem. Geol. 76, 25–40. Marty B. and Zimmermann L. (1999) Volatiles (He, C, N, Ar) in mid-ocean ridge basalts: Assessment of shallow-level fractionation and characterization of source composition. Geochim. Cosmochim. Acta. 63, 3619–3633. McCollom T. M. and Seewald J. S. (2001) A reassessment of the potential for reduction of dissolved CO2 to hydrocarbons during serpentinization of olivine. Geochim. Cosmochim. Acta. 65, 3769–3778. Merlivat L., Pineau F., and Javoy M. (1987) Hydrothermal vent waters at 13°N on the East Pacific Rise: isotopic composition and gas concentration. Earth Planet. Sci. Lett. 84, 100–108. Ozima M. and Podosek F. A. (2002) Noble gas geochemistry 2nd ed. Cambridge University Press, UK. Panichi C., Ferrara G. C., and Gonfiantini R. (1977) Isotope geothermometry in the Larderello geothermal field. Geothermics 5, 81–88. Paonita A., Favara R., Nuccio P. M., and Sortino F. (2002) Genesis of fumarolic emissions as inferred by isotope mass balances: CO2 and water at Vulcano Island, Italy. Geochim. Cosmochim. Acta. 66,759–772. Peters K. E., Sweeney R. E., and Kaplan I. R. (1978) Correlation of carbon and nitrogen stable isotope ratios in sedimentary organic matter. Limnol. Oceanogr. 23, 598–604. Poreda R. J., Jeffrey A. W. A., Kaplan I. R., and Craig H. (1988)Magmatic helium in subduction-zone natural gases. Chem. Geol. 71,199–210. Poreda R. J., Craig H., Arnorsson S., and Welhan J. A. (1992) Helium isotopes in Icelandic geothermal systems: I. 3He, gas chemistry, and 13C relations. Geochim. Cosmochim. Acta. 56, 4221–4228. Raynaud D., Jouzel J., Barnola J. M., Chappellaz J., Delmas R. J., and Lorius C. (1993) The ice record of greenhouse gases. Science 259,926–934. Rice D. D. and Claypool G. E. (1981) Generation, accumulation and resource potential of biogenic gas. Am. Assoc. Petrol. Geol. Bull. 65,5–25. Sano Y. and Wakita H. (1985) Geographical distribution of 3He/4He in Japan: implications for arc tectonics and incipient magmatism. J. Geophys. Res. 90, 8729–8741. Sano Y. and Wakita H. (1988) Precise measurement of helium isotopes in terrestrial gases. Bull. Chem. Soc. J. 61, 1153–1157. Sano Y., Takahata N., Mahara Y. and Yasuike S. (1993). Precise measurement of helium isotopes in groundwater. Jour. Sci. Hiroshima Univ. Ser. C, 9. 603–610. Sano Y. and Marty B. (1995) Origin of carbon in fumarolic gas from island arcs. Chem. Geol. 119, 265–274. Schoell M. (1980) The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochim. Cosmochim. Acta. 44, 649–661. Schoell M. (1988) Multiple origins of methane in the Earth. Chem. Geol. 71, 1–10. Sherwood Lollar B. S., Frape S. K., Weise S. M., Fritz P., Macko S. A., and Welhan J. A. (1993) Abiogenic methanogenesis in crystalline rocks. Geochim. Cosmochim. Acta. 57, 5087–5097. Shock E. L. (1992) Chemical environments of submarine hydrothermal systems. Origins Life Evol. Bios. 22, 67–107. Smith P. E., York D., Chen Y., and Evensen N. M. (1996) Single crystal 40Ar-39Ar dating of a Late Quaternary paroxysm on Kos,Greece: concordance of terrestrial and marine ages. Geophys. Res. Lett. 23, 3047–3050. Sugisaki R. and Mimura K. (1994) Mantle hydrocarbons: abiotic or biotic? Geochim. Cosmochim. Acta. 58, 2527–2542. Taran Yu.A. (1986) Gas geothermometers for hydrothermal systems. Geochem. Int. 3, 327–341. Taran Yu.A., Pokrovsky B. G., and Esikow A. D. (1989) Deuterium and oxygen-18 in fumarolic steam and amphiboles from some Kamchatka volcanoes: “andesitic waters.” Dokl. Akad. Nauk. USSR 340, 440–443. Taran Yu.A., Fischer T. P., Cienfugos E., and Morales P. (2002)Geochemistry of hydrothermal fluids from an intraplate ocean island:Everman volcano, Socorro Island, Mexico. Chem. Geol. 188, 51–63. Wakita H. and Sano Y. (1983) 3He/4He ratios in CH4-rich natural gases suggest magmatic origin. Nature 305, 792–794. Welhan J. A. (1988) Origins of methane in hydrothermal systems. Chem. Geol. 71, 183–198. Welhan J. A. and Craig H. (1983) Methane,hydrogen and helium in hydrothermal fluids. In Plenum, New York. Hydrothermal processes at seafloor spreading centers. (eds. P. A. Rona, K. Bostro¨m, L. Laubier and K. L. Smith, Jr.). NATO Conf. Ser. IV, Mar. Sci. 12,391–409. Whiticar M. J., Faber E., and Schoell M. (1986) Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation-isotopic evidence. Geochim. Cosmochim. Acta. 50, 693–709. Woodland A. B. and Koch M. (2003). Variations in oxygen fugacity with depth in the upper mantle beneath the Kaapvaal Craton, Southern Africa. Earth. Planet. Sci. Lett. 214, 295–310. Zolotov M. Y. and Shock E. L. (2000) A thermodynamic assessment of the potential synthesis of condensed hydrocarbons during cooling and dilution of volcanic gases. J. Geophys. Res. 105B, 539–559.en
dc.description.fulltextpartially_openen
dc.contributor.authorFiebig, J.-
dc.contributor.authorChiodini, G.-
dc.contributor.authorCaliro, S.-
dc.contributor.authorRizzo, A.-
dc.contributor.authorSpangenberg, J.-
dc.contributor.authorHunziker, J. C.-
dc.contributor.departmentInstitut de Mineralogie et Geochimie, Universite´ de Lausanne, BFSH 2, CH-1015 Lausanne, Switzerland-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia-
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia-
dc.contributor.departmentInstitut de Mineralogie et Geochimie, Universite´ de Lausanne, BFSH 2, CH-1015 Lausanne, Switzerland-
dc.contributor.departmentInstitut de Mineralogie et Geochimie, Universite´ de Lausanne, BFSH 2, CH-1015 Lausanne, Switzerland-
item.fulltextWith Fulltext-
item.grantfulltextrestricted-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent04. Solid Earth-
crisitem.author.deptInstitut de Mineralogie et Geochimie, Universite´ de Lausanne, BFSH 2, CH-1015 Lausanne, Switzerland-
crisitem.author.deptGoethe University, Frankfurt a.M., Germany-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptInstitut de Mineralogie et Geochimie, Universite´ de Lausanne, BFSH 2, CH-1015 Lausanne, Switzerland-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Papers Published / Papers in press
Files in This Item:
File Description SizeFormat 
Fiebig et al. Geoch. et Cosmoch. Acta 2004.pdfMain article809.92 kBAdobe PDFView/Open
Redirect Elsevier.htmlRedirect-Elsevier539 BHTMLView/Open
Show simple item record

Page view(s)

359
Last Week
0
Last month
9
checked on Jul 19, 2018

Download(s)

63
checked on Jul 19, 2018

Google ScholarTM

Check

Altmetric