Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/3445
DC FieldValueLanguage
dc.contributor.authorallCarniel, S.; CNR-ISMARen
dc.contributor.authorallVichi, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallSclavo, M.; CNR-ISMARen
dc.date.accessioned2007-12-17T14:03:38Zen
dc.date.available2007-12-17T14:03:38Zen
dc.date.issued2007-04en
dc.identifier.urihttp://hdl.handle.net/2122/3445en
dc.description.abstractThis paper investigates the impacts of different turbulence models on the biological state at an ocean station in the northern Adriatic sea, named S3, comparing them with other uncertainties inherent to coupled physical-biological simulations. The numerical tool is a 1-D model resulting from the coupling of two advanced numerical models. The hydrodynamic part is modelled using the General Ocean Turbulence Model (www.gotm.net), in a version adopting state-of-the-art second-moment Turbulence Closure Models (TCMs). Marine biogeochemistry is parameterized with the Biogeochemical Flux Model (http://www.bo.ingv.it/bfm), which is a direct descendant of ERSEM (European Regional Sea Ecosystem Model). Results, obtained by forcing the model with hourly wind and solar radiation data and assimilating salinity casts, are compared against monthly observations made at the station during 2000-2001. Provided that modern second-moment TCMs are employed, the comparisons indicate that both the physical and the biological dynamics are relatively insensitive to the choice of the particular scheme adopted, suggesting that TCMs have finally 'converged' in recent years. As a further example, the choice of the nutrient boundary conditions has an impact on the system evolution that is more significant than the choice of the specific TCM, therefore representing a possible limitation of the 1-D model applied to stations located in a Region of Freshwater Influence. The 1-D model simulates the onset and intensity of the spring-summer bloom quite well, although the duration of the bloom is not as prolonged as in the data. Since local dynamics appears unable to sustain the bloom conditions well into summer, phytoplankton at the station was most likely influenced by river input or advection processes, an aspect that was not found when the S3 behaviour was adequately modelled using climatological forcings. When the focus is in predicting high-frequency dynamics, it is more likely that lateral advection cannot be neglected. While the physical state can be satisfactorily estimated at these short time scales, the accurate estimation of the biological state in coastal regions still appears as rather elusive.en
dc.description.sponsorshipThe authors acknowledge the GOTM team for making available the code and Prof. L. Kantha (University of Colorado, USA) for the helpful discussions. SC and MS acknowledge with pleasure the support from US ONR Grant N00014-05-1-0730, CAINO (Regione Puglia,Italy)and VECTOR (MIUR, Ministry of Research, Italy) Projects. Biogeochemical data from S3 station were made available thanks to Drs M. Bastianini, A. Boldrin, F. Bernardy-Aubry, A. Pugnetti, andG. Socal (CNR-ISMAR, Venice). The Venice municipality (F. Pastore) is acknowledged for having provided the wind data.en
dc.language.isoEnglishen
dc.publisher.nameTaylor & Francisen
dc.relation.ispartofChemistry and Ecologyen
dc.relation.ispartofseries2/23(2007)en
dc.subjectPelagic environmenten
dc.subjectCoastal zoneen
dc.subjectTurbulent diffusionen
dc.subjectPhysical–biogeochemical modellingen
dc.subjectBFMen
dc.titleSensitivity of a coupled physical–biological model to turbulence: high-frequency simulations in a northern Adriatic stationen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber157-175en
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.99. General or miscellaneousen
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.04. Ecosystemsen
dc.identifier.doi10.180/02757540701197903en
dc.description.obiettivoSpecifico3.7. Dinamica del clima e dell'oceanoen
dc.description.journalTypeN/A or not JCRen
dc.description.fulltextpartially_openen
dc.contributor.authorCarniel, S.en
dc.contributor.authorVichi, M.en
dc.contributor.authorSclavo, M.en
dc.contributor.departmentCNR-ISMARen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentCNR-ISMARen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
c&e_2007.pdfpublished file (protected)559.64 kBAdobe PDF
carniel_et_al_2007.pdfpost-print (dowloadable)880.32 kBAdobe PDFView/Open
Show simple item record

Page view(s) 50

148
checked on Apr 24, 2024

Download(s) 50

158
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric